organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
ADDENDA AND ERRATA

A correction has been published for this article. To view the correction, click here.

3-(tert-But­­oxy­carbon­yl)-2-(4-chloro­phen­yl)-1,3-thia­zolidine-4-carb­­oxy­lic acid

aSchool of Chemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
*Correspondence e-mail: dsm@cczu.edu.cn

(Received 11 September 2010; accepted 18 September 2010; online 25 September 2010)

In the title compound, C15H18ClNO4S, the thia­zolidine ring adopts a twisted conformation about the S—C(methyl­ene) bond. The dihedral angle between the five- and six-membered rings is 77.2 (3)°. In the crystal, the mol­ecules are linked by O—H⋯O hydrogen bonds, generating C(7) chains propagating in [100].

Related literature

For background to the biological properties of the title compound, see: Lu et al. (2010[Lu, Y., Wang, Z., Li, C.-M., Chen, J.-J., Dalton, J. T., Li, W. & Miller, D. D. (2010). Bioorg. Med. Chem. 18, 477-495.]); Song et al. (2009[Song, Z.-C., Ma, G.-Y., Lv, P.-C., Li, H.-Q., Xiao, Z.-P. & Zhu, H.-L. (2009). Eur. J. Med. Chem. 44, 3903-3908.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H18ClNO4S

  • Mr = 343.81

  • Monoclinic, P 21

  • a = 6.4600 (13) Å

  • b = 10.641 (2) Å

  • c = 12.411 (3) Å

  • β = 94.52 (3)°

  • V = 850.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.899, Tmax = 0.965

  • 1638 measured reflections

  • 1638 independent reflections

  • 1363 reflections with I > 2σ(I)

  • 200 standard reflections every 3 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.159

  • S = 1.08

  • 1638 reflections

  • 185 parameters

  • 89 restraints

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.37 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Flack parameter: −0.09 (19)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O3i 0.82 1.83 2.638 (6) 167
Symmetry code: (i) x+1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, 3-tert-butoxycarbonyl-2-arylthiazolidine-4-carboxylic acid derivatives have been reported to possess antimicrobial and antitumor activities (Song et al., 2009; Lu et al., 2010). In this work, we report here the crystal structure of the title compound, (I). In (I), all bond lengths are within normal ranges (Allen et al., 1987) (Fig. 1). There are intermolecular O—H···O hydrogen bonds in (I).

Related literature top

For background to the biological properties of the title compound, see: Lu et al. (2010); Song et al. (2009). For reference bond-length data, see: Allen et al. (1987). PLATON indicates 0 Frie

Experimental top

A mixture of L-cysteine (1.41 g, 10 mmol) and 4-chlorobenzaldehyde (1.4 g, 10 mmol) in methanol (100 ml) was stirred at room temperature for 10 h, and the separated solid was collected, washed with diethyl ether, and dried to obtain 2-(4-chlorophenyl)thiazolidine-4-carboxylic with yield of 90%. In ice water, 2-(4-chlorophenyl)thiazolidine-4-carboxylic (1 mmol) was dissolved in 1 N NaOH (1 ml) and 1,4-dioxane (10 ml); then di-tert-butyldicarbonate (1 mmol) was added slowly and stirred at room temperature for 6 h. The reaction mixture was concentrated in a vacuum and washed with ethyl acetate (10 ml). The aqueous phase was adjusted to pH 4 by adding 1 N HCl, then extracted with ethyl acetate, dried with magnesium sulfate, filtered, After keeping the filtrate in air for 5 d, colorless block-shaped crystals of (I) were formed.

Refinement top

All H atoms were positioned geometrically (C—H = 0.93 Å for the aromatic H atoms and C—H = 0.96 Å for the aliphatic H atoms) and were refined as riding, with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 30% probability displacement ellipsoids.
3-(tert-Butoxycarbonyl)-2-(4-chlorophenyl)-1,3-thiazolidine-4-carboxylic acid top
Crystal data top
C15H18ClNO4SF(000) = 360
Mr = 343.81Dx = 1.343 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 6.4600 (13) Åθ = 9–12°
b = 10.641 (2) ŵ = 0.36 mm1
c = 12.411 (3) ÅT = 293 K
β = 94.52 (3)°Block, colorless
V = 850.5 (3) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
1363 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 25.3°, θmin = 1.7°
ω/2θ scanh = 77
Absorption correction: ψ scan
(North et al., 1968)
k = 012
Tmin = 0.899, Tmax = 0.965l = 014
1638 measured reflections200 standard reflections every 3 reflections
1638 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.0649P)2 + 1.2912P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1638 reflectionsΔρmax = 0.43 e Å3
185 parametersΔρmin = 0.37 e Å3
89 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (19)
Crystal data top
C15H18ClNO4SV = 850.5 (3) Å3
Mr = 343.81Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.4600 (13) ŵ = 0.36 mm1
b = 10.641 (2) ÅT = 293 K
c = 12.411 (3) Å0.30 × 0.20 × 0.10 mm
β = 94.52 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1363 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.899, Tmax = 0.965200 standard reflections every 3 reflections
1638 measured reflections intensity decay: 1%
1638 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.062H-atom parameters constrained
wR(F2) = 0.159Δρmax = 0.43 e Å3
S = 1.08Δρmin = 0.37 e Å3
1638 reflectionsAbsolute structure: Flack (1983)
185 parametersAbsolute structure parameter: 0.09 (19)
89 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3575 (11)0.4607 (7)0.7980 (6)0.0457 (16)
H10.47760.49840.77680.055*
C20.3229 (12)0.3336 (8)0.7816 (6)0.0519 (17)
H20.41830.28630.74650.062*
C30.1505 (12)0.2766 (8)0.8162 (7)0.0555 (18)
C40.0021 (13)0.3440 (8)0.8654 (6)0.0585 (18)
H40.11630.30540.88790.070*
C50.0368 (11)0.4720 (7)0.8800 (6)0.0492 (16)
H50.06040.51950.91360.059*
C60.2109 (9)0.5308 (6)0.8464 (5)0.0349 (13)
C70.2361 (9)0.6677 (6)0.8692 (4)0.0358 (13)
H70.10360.70230.88870.043*
C80.4770 (9)0.8351 (7)0.8161 (5)0.0409 (14)
H80.43640.91650.78420.049*
O10.8408 (8)0.8639 (5)0.8109 (4)0.060
C90.4827 (11)0.8471 (7)0.9375 (5)0.0494 (16)
H9A0.37600.90430.95830.059*
H9B0.61700.87740.96710.059*
C100.6910 (9)0.8031 (8)0.7835 (5)0.0459 (17)
C110.2163 (9)0.7473 (7)0.6838 (5)0.0373 (14)
C120.2095 (11)0.8500 (8)0.5098 (5)0.0520 (18)
C130.2564 (14)0.7386 (9)0.4443 (8)0.070
H13A0.39990.71610.45860.106*
H13B0.22930.75790.36900.106*
H13C0.17050.66950.46290.106*
C140.0195 (13)0.8803 (9)0.4998 (8)0.069
H14A0.09750.80560.51230.104*
H14B0.05830.91170.42860.104*
H14C0.04830.94290.55230.104*
C150.3316 (15)0.9649 (10)0.4750 (7)0.078 (3)
H15A0.29431.03710.51560.116*
H15B0.29920.98020.39930.116*
H15C0.47770.94920.48830.116*
Cl10.1156 (5)0.1156 (2)0.7961 (2)0.0908 (9)
N10.3167 (7)0.7456 (5)0.7848 (4)0.0336 (11)
O20.6980 (6)0.7001 (6)0.7256 (4)0.0534 (12)
H2A0.81850.68580.71310.080*
O30.0721 (6)0.6749 (5)0.6573 (3)0.0398 (10)
O40.2916 (7)0.8324 (5)0.6216 (3)0.0448 (11)
S10.4357 (3)0.68989 (18)0.98363 (12)0.0481 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.047 (4)0.049 (3)0.041 (4)0.001 (3)0.003 (3)0.001 (3)
C20.059 (4)0.055 (4)0.041 (4)0.010 (3)0.001 (3)0.006 (3)
C30.064 (4)0.047 (4)0.053 (4)0.006 (3)0.014 (3)0.007 (3)
C40.060 (4)0.057 (4)0.058 (4)0.014 (3)0.004 (3)0.004 (4)
C50.046 (3)0.056 (4)0.045 (4)0.004 (3)0.003 (3)0.011 (3)
C60.039 (3)0.035 (3)0.031 (3)0.000 (2)0.002 (2)0.008 (3)
C70.035 (3)0.043 (4)0.030 (3)0.005 (3)0.003 (2)0.006 (3)
C80.042 (3)0.038 (3)0.042 (3)0.001 (3)0.004 (3)0.001 (3)
O10.0600.0600.0600.0000.0050.000
C90.052 (4)0.052 (4)0.043 (3)0.008 (3)0.006 (3)0.009 (3)
C100.026 (3)0.074 (5)0.037 (3)0.015 (3)0.006 (2)0.002 (3)
C110.028 (3)0.053 (4)0.031 (3)0.009 (3)0.002 (2)0.002 (3)
C120.050 (4)0.070 (5)0.035 (3)0.008 (4)0.003 (3)0.019 (4)
C130.0700.0700.0700.0000.0060.000
C140.0700.0700.0700.0000.0060.000
C150.086 (6)0.085 (7)0.061 (5)0.007 (5)0.006 (4)0.036 (5)
Cl10.115 (2)0.0475 (12)0.1032 (19)0.0122 (13)0.0338 (16)0.0021 (13)
N10.030 (2)0.038 (3)0.033 (2)0.004 (2)0.0010 (19)0.001 (2)
O20.032 (2)0.066 (3)0.064 (3)0.010 (2)0.012 (2)0.018 (3)
O30.029 (2)0.058 (3)0.0317 (19)0.007 (2)0.0026 (15)0.005 (2)
O40.044 (2)0.055 (3)0.035 (2)0.015 (2)0.0001 (18)0.016 (2)
S10.0578 (10)0.0564 (10)0.0285 (7)0.0005 (9)0.0071 (6)0.0025 (9)
Geometric parameters (Å, º) top
C1—C61.379 (9)C9—H9A0.9700
C1—C21.384 (11)C9—H9B0.9700
C1—H10.9300C10—O21.313 (9)
C2—C31.367 (11)C11—O31.234 (8)
C2—H20.9300C11—O41.308 (8)
C3—C41.378 (12)C11—N11.365 (8)
C3—Cl11.744 (8)C12—O41.457 (8)
C4—C51.390 (11)C12—C131.483 (12)
C4—H40.9300C12—C141.510 (11)
C5—C61.380 (9)C12—C151.535 (11)
C5—H50.9300C13—H13A0.9600
C6—C71.490 (9)C13—H13B0.9600
C7—N11.464 (8)C13—H13C0.9600
C7—S11.857 (6)C14—H14A0.9600
C7—H70.9800C14—H14B0.9600
C8—N11.437 (8)C14—H14C0.9600
C8—C101.510 (9)C15—H15A0.9600
C8—C91.510 (9)C15—H15B0.9600
C8—H80.9800C15—H15C0.9600
O1—C101.191 (8)O2—H2A0.8200
C9—S11.801 (8)
C6—C1—C2119.0 (7)O1—C10—O2123.2 (6)
C6—C1—H1120.5O1—C10—C8122.8 (7)
C2—C1—H1120.5O2—C10—C8114.0 (5)
C3—C2—C1120.9 (7)O3—C11—O4125.6 (5)
C3—C2—H2119.6O3—C11—N1122.1 (6)
C1—C2—H2119.6O4—C11—N1112.3 (5)
C2—C3—C4121.4 (8)O4—C12—C13110.1 (7)
C2—C3—Cl1119.4 (7)O4—C12—C14112.7 (6)
C4—C3—Cl1119.2 (7)C13—C12—C14111.5 (7)
C3—C4—C5117.2 (8)O4—C12—C15102.4 (6)
C3—C4—H4121.4C13—C12—C15110.5 (6)
C5—C4—H4121.4C14—C12—C15109.2 (7)
C6—C5—C4122.2 (8)C12—C13—H13A109.5
C6—C5—H5118.9C12—C13—H13B109.5
C4—C5—H5118.9H13A—C13—H13B109.5
C1—C6—C5119.3 (6)C12—C13—H13C109.5
C1—C6—C7122.9 (6)H13A—C13—H13C109.5
C5—C6—C7117.8 (6)H13B—C13—H13C109.5
N1—C7—C6117.2 (5)C12—C14—H14A109.5
N1—C7—S1102.2 (4)C12—C14—H14B109.5
C6—C7—S1109.2 (4)H14A—C14—H14B109.5
N1—C7—H7109.3C12—C14—H14C109.5
C6—C7—H7109.3H14A—C14—H14C109.5
S1—C7—H7109.3H14B—C14—H14C109.5
N1—C8—C10115.7 (6)C12—C15—H15A109.5
N1—C8—C9106.7 (5)C12—C15—H15B109.5
C10—C8—C9109.6 (5)H15A—C15—H15B109.5
N1—C8—H8108.2C12—C15—H15C109.5
C10—C8—H8108.2H15A—C15—H15C109.5
C9—C8—H8108.2H15B—C15—H15C109.5
C8—C9—S1104.3 (5)C11—N1—C8121.3 (5)
C8—C9—H9A110.9C11—N1—C7119.6 (5)
S1—C9—H9A110.9C8—N1—C7118.1 (5)
C8—C9—H9B110.9C10—O2—H2A109.5
S1—C9—H9B110.9C11—O4—C12121.8 (5)
H9A—C9—H9B108.9C9—S1—C790.0 (3)
C6—C1—C2—C32.5 (11)O3—C11—N1—C8176.7 (6)
C1—C2—C3—C42.1 (12)O4—C11—N1—C83.6 (8)
C1—C2—C3—Cl1178.8 (6)O3—C11—N1—C78.1 (9)
C2—C3—C4—C51.1 (11)O4—C11—N1—C7172.2 (5)
Cl1—C3—C4—C5179.8 (6)C10—C8—N1—C1183.3 (7)
C3—C4—C5—C60.5 (11)C9—C8—N1—C11154.5 (5)
C2—C1—C6—C51.9 (10)C10—C8—N1—C7107.9 (6)
C2—C1—C6—C7178.9 (6)C9—C8—N1—C714.2 (7)
C4—C5—C6—C10.9 (10)C6—C7—N1—C1156.7 (7)
C4—C5—C6—C7178.1 (6)S1—C7—N1—C11176.0 (4)
C1—C6—C7—N142.7 (8)C6—C7—N1—C8134.4 (6)
C5—C6—C7—N1140.2 (6)S1—C7—N1—C815.1 (6)
C1—C6—C7—S172.7 (7)O3—C11—O4—C120.4 (10)
C5—C6—C7—S1104.3 (6)N1—C11—O4—C12179.3 (6)
N1—C8—C9—S137.6 (6)C13—C12—O4—C1167.2 (8)
C10—C8—C9—S188.4 (6)C14—C12—O4—C1158.1 (10)
N1—C8—C10—O1174.4 (6)C15—C12—O4—C11175.3 (6)
C9—C8—C10—O153.8 (9)C8—C9—S1—C740.6 (5)
N1—C8—C10—O23.4 (8)N1—C7—S1—C931.7 (4)
C9—C8—C10—O2124.0 (6)C6—C7—S1—C9156.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.821.832.638 (6)167
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H18ClNO4S
Mr343.81
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)6.4600 (13), 10.641 (2), 12.411 (3)
β (°) 94.52 (3)
V3)850.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.899, 0.965
No. of measured, independent and
observed [I > 2σ(I)] reflections
1638, 1638, 1363
Rint0.000
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.159, 1.08
No. of reflections1638
No. of parameters185
No. of restraints89
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.37
Absolute structureFlack (1983)
Absolute structure parameter0.09 (19)

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···O3i0.821.832.638 (6)167
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The work was supported by youthfund project (project JQ201006) of Changzhou University.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationLu, Y., Wang, Z., Li, C.-M., Chen, J.-J., Dalton, J. T., Li, W. & Miller, D. D. (2010). Bioorg. Med. Chem. 18, 477–495.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Z.-C., Ma, G.-Y., Lv, P.-C., Li, H.-Q., Xiao, Z.-P. & Zhu, H.-L. (2009). Eur. J. Med. Chem. 44, 3903–3908.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds