organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Quinoline-2-carbo­nitrile

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 3 August 2010; accepted 17 August 2010; online 25 August 2010)

In the title compound, C10H6N2, the mol­ecule is almost planar, with an r.m.s. deviation of 0.014 Å. The dihedral angle between the aromatic rings is 1.28 (16)°. In the crystal, mol­ecules are stacked along the a axis by way of weak aromatic ππ stacking inter­actions between the benzene and pyridine rings of adjacent mol­ecules [centroid–centroid separation = 3.7943 (19) Å].

Related literature

For the biological activity and syntheses of quinoline derivatives, see: Sasaki et al. (1998[Sasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 3851-3856.]); Reux et al. (2009[Reux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). Bioorg. Med. Chem. 17, 4441-4447.]). For related structures, see: Fun et al. (2010[Fun, H.-K., Quah, C. K., Maity, A. C., Das, N. K. & Goswami, S. (2010). Acta Cryst. E66, o28.]); Loh et al. (2009[Loh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o3144-o3145.], 2010[Loh, W.-S., Fun, H.-K., Kiran, K., Sarveswari, S. & Vijayakumar, V. (2010). Acta Cryst. E66, o1237.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H6N2

  • Mr = 154.17

  • Orthorhombic, P 21 21 21

  • a = 3.8497 (2) Å

  • b = 9.9559 (4) Å

  • c = 19.9639 (13) Å

  • V = 765.16 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.36 × 0.18 × 0.03 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.997

  • 4086 measured reflections

  • 1056 independent reflections

  • 838 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.141

  • S = 1.09

  • 1056 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Heterocyclic molecules containing cyano group are useful as drug intermediates. Syntheses of the quinoline derivatives were discussed earlier (Sasaki et al., 1998; Reux et al., 2009). Recently, we have synthesized a number of quinoline compounds to investigate the hydrogen bonding patterns in these compounds (Loh et al., 2009; 2010). Herein we report the crystal structure of quinoline-2-carbonitrile.

In the title compound, Fig. 1, the molecule is almost planar with an r.m.s. deviation of 0.014 Å. The dihedral angle between the benzene (C3–C8) and pyridine (C1–C3/N1/C8/C9) rings is 1.28 (16)°. The bond lengths (Allen et al., 1987) and angles in the title compound are within normal ranges and comparable to the related structure of quinoxaline-2-carbonitrile (Fun et al., 2010).

In the crystal packing, Fig. 2, the molecules are stacked along the a axis by way of weak aromatic ππ stacking interactions between the centroid of the benzene (Cg1) and the centroid of the pyridine (Cg2) rings of adjacent molecules [Cg1···Cg2 separation = 3.7943 (19) Å]. There is no significant hydrogen bond observed in this compound.

Related literature top

For the biological activity and syntheses of quinoline derivatives, see: Sasaki et al. (1998); Reux et al. (2009). For related structures, see: Fun et al. (2010); Loh et al. (2009, 2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

Experimental top

A hot methanol solution (20 ml) of quinoline-2-carbonitrile (39 mg, Aldrich) was warmed over a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly to room temperature. Colourless plates of (I) appeared after a few days.

Refinement top

All H atoms were positioned geometrically with the bond length of C–H being 0.93 Å and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). In the absence of significant anomalous dispersion, 616 Friedel pairs were merged for the final refinement.

Structure description top

Heterocyclic molecules containing cyano group are useful as drug intermediates. Syntheses of the quinoline derivatives were discussed earlier (Sasaki et al., 1998; Reux et al., 2009). Recently, we have synthesized a number of quinoline compounds to investigate the hydrogen bonding patterns in these compounds (Loh et al., 2009; 2010). Herein we report the crystal structure of quinoline-2-carbonitrile.

In the title compound, Fig. 1, the molecule is almost planar with an r.m.s. deviation of 0.014 Å. The dihedral angle between the benzene (C3–C8) and pyridine (C1–C3/N1/C8/C9) rings is 1.28 (16)°. The bond lengths (Allen et al., 1987) and angles in the title compound are within normal ranges and comparable to the related structure of quinoxaline-2-carbonitrile (Fun et al., 2010).

In the crystal packing, Fig. 2, the molecules are stacked along the a axis by way of weak aromatic ππ stacking interactions between the centroid of the benzene (Cg1) and the centroid of the pyridine (Cg2) rings of adjacent molecules [Cg1···Cg2 separation = 3.7943 (19) Å]. There is no significant hydrogen bond observed in this compound.

For the biological activity and syntheses of quinoline derivatives, see: Sasaki et al. (1998); Reux et al. (2009). For related structures, see: Fun et al. (2010); Loh et al. (2009, 2010). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. The crystal structure of (I), viewed along the a axis.
Quinoline-2-carbonitrile top
Crystal data top
C10H6N2F(000) = 320
Mr = 154.17Dx = 1.338 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 930 reflections
a = 3.8497 (2) Åθ = 3.7–27.4°
b = 9.9559 (4) ŵ = 0.08 mm1
c = 19.9639 (13) ÅT = 100 K
V = 765.16 (7) Å3Plate, colourless
Z = 40.36 × 0.18 × 0.03 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
1056 independent reflections
Radiation source: fine-focus sealed tube838 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
φ and ω scansθmax = 27.5°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 44
Tmin = 0.971, Tmax = 0.997k = 1212
4086 measured reflectionsl = 2521
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0827P)2]
where P = (Fo2 + 2Fc2)/3
1056 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C10H6N2V = 765.16 (7) Å3
Mr = 154.17Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 3.8497 (2) ŵ = 0.08 mm1
b = 9.9559 (4) ÅT = 100 K
c = 19.9639 (13) Å0.36 × 0.18 × 0.03 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
1056 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
838 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.997Rint = 0.059
4086 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.09Δρmax = 0.31 e Å3
1056 reflectionsΔρmin = 0.24 e Å3
109 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7386 (8)0.5083 (2)0.20498 (14)0.0185 (6)
N20.3930 (9)0.4374 (2)0.35822 (16)0.0296 (7)
C10.7983 (9)0.2683 (3)0.22614 (16)0.0193 (7)
H1A0.75520.19640.25470.023*
C20.9617 (9)0.2502 (3)0.16647 (16)0.0192 (7)
H2A1.03680.16490.15410.023*
C31.0178 (9)0.3604 (3)0.12314 (16)0.0174 (7)
C41.1815 (8)0.3487 (3)0.06064 (16)0.0201 (7)
H4A1.26620.26580.04680.024*
C51.2177 (9)0.4589 (3)0.01965 (18)0.0224 (7)
H5A1.32040.44980.02230.027*
C61.0989 (8)0.5855 (3)0.04129 (17)0.0239 (8)
H6A1.12570.65950.01330.029*
C70.9466 (9)0.6018 (3)0.10188 (17)0.0213 (7)
H7A0.87360.68660.11540.026*
C80.8981 (8)0.4894 (3)0.14492 (17)0.0162 (7)
C90.6962 (8)0.4002 (3)0.24322 (16)0.0169 (7)
C100.5263 (9)0.4229 (3)0.30714 (17)0.0196 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0149 (13)0.0120 (10)0.0284 (15)0.0014 (10)0.0013 (13)0.0012 (10)
N20.0336 (17)0.0199 (13)0.0353 (17)0.0000 (12)0.0055 (16)0.0013 (13)
C10.0146 (16)0.0128 (12)0.0306 (18)0.0016 (12)0.0030 (15)0.0009 (12)
C20.0155 (16)0.0113 (12)0.0307 (18)0.0009 (12)0.0020 (15)0.0027 (12)
C30.0130 (15)0.0150 (13)0.0243 (17)0.0006 (11)0.0063 (14)0.0028 (12)
C40.0134 (16)0.0184 (14)0.0286 (19)0.0016 (12)0.0010 (15)0.0060 (13)
C50.0164 (16)0.0251 (15)0.0256 (17)0.0004 (14)0.0003 (15)0.0006 (13)
C60.0218 (17)0.0167 (13)0.0333 (19)0.0009 (13)0.0003 (16)0.0053 (14)
C70.0202 (17)0.0128 (13)0.0311 (19)0.0003 (13)0.0039 (16)0.0021 (12)
C80.0124 (15)0.0111 (12)0.0249 (16)0.0016 (11)0.0027 (14)0.0033 (12)
C90.0130 (14)0.0130 (12)0.0247 (17)0.0019 (12)0.0035 (14)0.0018 (11)
C100.0186 (17)0.0098 (12)0.0306 (19)0.0019 (12)0.0015 (15)0.0008 (12)
Geometric parameters (Å, º) top
N1—C91.329 (4)C4—C51.376 (4)
N1—C81.360 (4)C4—H4A0.9300
N2—C101.151 (4)C5—C61.409 (4)
C1—C21.359 (4)C5—H5A0.9300
C1—C91.413 (4)C6—C71.354 (4)
C1—H1A0.9300C6—H6A0.9300
C2—C31.414 (4)C7—C81.424 (4)
C2—H2A0.9300C7—H7A0.9300
C3—C41.402 (4)C9—C101.452 (4)
C3—C81.432 (4)
C9—N1—C8116.7 (2)C6—C5—H5A120.1
C2—C1—C9117.6 (3)C7—C6—C5121.5 (3)
C2—C1—H1A121.2C7—C6—H6A119.3
C9—C1—H1A121.2C5—C6—H6A119.3
C1—C2—C3120.3 (3)C6—C7—C8120.1 (3)
C1—C2—H2A119.9C6—C7—H7A120.0
C3—C2—H2A119.9C8—C7—H7A120.0
C4—C3—C2123.3 (2)N1—C8—C7118.8 (2)
C4—C3—C8119.3 (3)N1—C8—C3122.5 (3)
C2—C3—C8117.4 (3)C7—C8—C3118.7 (3)
C5—C4—C3120.6 (3)N1—C9—C1125.4 (3)
C5—C4—H4A119.7N1—C9—C10115.7 (2)
C3—C4—H4A119.7C1—C9—C10118.8 (3)
C4—C5—C6119.9 (3)N2—C10—C9178.2 (3)
C4—C5—H5A120.1
C9—C1—C2—C31.4 (4)C6—C7—C8—N1178.8 (3)
C1—C2—C3—C4179.4 (3)C6—C7—C8—C30.9 (5)
C1—C2—C3—C80.3 (4)C4—C3—C8—N1179.7 (3)
C2—C3—C4—C5177.7 (3)C2—C3—C8—N10.6 (4)
C8—C3—C4—C52.0 (4)C4—C3—C8—C70.6 (4)
C3—C4—C5—C61.9 (5)C2—C3—C8—C7179.1 (3)
C4—C5—C6—C70.4 (5)C8—N1—C9—C11.0 (5)
C5—C6—C7—C81.0 (5)C8—N1—C9—C10179.8 (3)
C9—N1—C8—C7179.4 (3)C2—C1—C9—N11.8 (5)
C9—N1—C8—C30.3 (4)C2—C1—C9—C10179.0 (3)

Experimental details

Crystal data
Chemical formulaC10H6N2
Mr154.17
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)3.8497 (2), 9.9559 (4), 19.9639 (13)
V3)765.16 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.36 × 0.18 × 0.03
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.971, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
4086, 1056, 838
Rint0.059
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.141, 1.09
No. of reflections1056
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Footnotes

Thomson Reuters ResearcherID: C-7581-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL and CKQ thank USM for the award of USM fellowships and HM thanks USM for the award of a post doctoral fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Quah, C. K., Maity, A. C., Das, N. K. & Goswami, S. (2010). Acta Cryst. E66, o28.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoh, W.-S., Fun, H.-K., Kiran, K., Sarveswari, S. & Vijayakumar, V. (2010). Acta Cryst. E66, o1237.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLoh, W.-S., Fun, H.-K., Sarveswari, S., Vijayakumar, V. & Reddy, B. P. (2009). Acta Cryst. E65, o3144–o3145.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationReux, B., Nevalainen, T., Raitio, K. H. & Koskinen, A. M. P. (2009). Bioorg. Med. Chem. 17, 4441–4447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSasaki, K., Tsurumori, A. & Hirota, T. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 3851–3856.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds