organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-[(E)-1-(5-Chloro-2-hy­dr­oxy­phen­yl)ethyl­­idene]pyridine-3-carbohydrazide monohydrate

aDepartment of Chemistry, Bahauddin Zakariya University, Multan 60800, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 26 June 2010; accepted 27 June 2010; online 30 June 2010)

In the title compound, C14H12ClN3O2·H2O, the benzene ring and the pyridine rings are oriented at a dihedral angle of 57.73 (12)° and an intra­molecular O—H⋯N hydrogen bond generates an S(6) ring. In the crystal, the water mol­ecule forms O—H⋯O and O—H⋯N hydrogen bonds to the organic mol­ecule, leading to chains containing R44(16) loops. In addition, weak aromatic ππ stacking inter­actions between the centroids of pyridine rings [at distance of 3.864 (2) and 4.013 (2) Å] and C—H⋯π inter­actions occur.

Related literature

For background to Schiff bases and for related structures, see: Shafiq et al. (2009a[Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009a). Acta Cryst. E65, o2496.],b[Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009b). Acta Cryst. E65, o2899.]): For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12ClN3O2·H2O

  • Mr = 307.73

  • Triclinic, [P \overline 1]

  • a = 7.1693 (5) Å

  • b = 7.4964 (4) Å

  • c = 14.5966 (9) Å

  • α = 90.138 (2)°

  • β = 95.835 (1)°

  • γ = 115.755 (2)°

  • V = 701.94 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 296 K

  • 0.28 × 0.18 × 0.14 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.942, Tmax = 0.959

  • 10105 measured reflections

  • 2491 independent reflections

  • 2151 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.135

  • S = 1.17

  • 2491 reflections

  • 198 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C1–C6 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.84 2.555 (3) 144
N2—H2⋯O3i 0.86 2.06 2.898 (4) 166
O3—H3A⋯O2 0.89 (5) 1.88 (5) 2.760 (4) 171 (3)
O3—H3B⋯N3ii 0.91 (4) 2.01 (4) 2.885 (4) 161 (4)
C8—H8ACg2iii 0.96 2.99 3.763 (4) 139
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z+1; (iii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

We have reported crystal structures of Schiff bases containing pyridne (Shafiq et al., 2009a, 2009b) and as a part of this project, we report herein the structure and synthesis of the title compound (I, Fig. 1).

In (I) the group A (C1–C8/O1/CL1) of 5-chloro-2-hydroxyacetophenone, the central group B (N1/N2/C9/O2) and the pyridine ring C (C10—C14/N3) are planar with r. m. s. deviation of 0.0330, 0.0182 and 0.0082 Å, respectively. The dihedral angle between A/B, A/C and B/C is 6.62 (11), 58.08 (10) and 52.98 (14)°, respectively. There exist intramolecular H-bonding of O—H···N type forming an S(6) ring motif (Bernstein et al., 1995). The water molecule acts as donar as well as accepter and therefore interconnects three molecules. Due to intra as well as intermolecular H-bondings of O—H···O and O—H···N types (Table 1, Fig. 2), the title compound is stabilized in infinite one dimensional polymeric chains. In the polymeric chains R44(16) ring motifs are formed. The ππ interactions exist between the centroids of pyridine rings at distance of 3.864 (2) Å [symmetry: -x, -y, 1 - z] and at 4.013 (2) Å [symmetry: 1 - x, 1 - y, 1 - z]. The C—H···π interaction (Table 1) also plays an important role in stabilizing the structure.

Related literature top

For background to Schiff bases and for related structures, see: Shafiq et al. (2009a,b): For graph-set notation, see: Bernstein et al. (1995).

Experimental top

To a hot stirred solution of 5-chloro-2-hydroxyacetophenone (1.71 g, 0.01 mole) in ethanol, 25 ml nicotinic acid hydrazide (1.37 g, 0.01 mol) was added. The resultant mixture was then heated under reflux for 7–8 h. The reaction was monitored through TLC. The precipitate were formed were collected by suction filteration. The resultant crude material was dried and recrystalized in 1,4-dioxan:ethanol(1:2) to affoard light brown needles of (I).

Refinement top

The coordinates of H-atoms of water molecule were refined. The H-atoms were positioned geometrically (O–H = 0.82, N–H = 0.86, C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = xUeq(C, N, O), where x = 1.5 for methyl and x = 1.2 for all other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted line shows the intramolecular H-bond.
[Figure 2] Fig. 2. The partial packing of (I), which shows that molecules form infinite one dimensional polymeric chains with different ring motifs.
N'-[(E)-1-(5-Chloro-2-hydroxyphenyl)ethylidene]pyridine-3- carbohydrazide monohydrate top
Crystal data top
C14H12ClN3O2·H2OZ = 2
Mr = 307.73F(000) = 320
Triclinic, P1Dx = 1.456 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1693 (5) ÅCell parameters from 1770 reflections
b = 7.4964 (4) Åθ = 2.6–28.4°
c = 14.5966 (9) ŵ = 0.29 mm1
α = 90.138 (2)°T = 296 K
β = 95.835 (1)°Needle, light brown
γ = 115.755 (2)°0.28 × 0.18 × 0.14 mm
V = 701.94 (8) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2491 independent reflections
Radiation source: fine-focus sealed tube2151 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 8.20 pixels mm-1θmax = 25.3°, θmin = 2.8°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 88
Tmin = 0.942, Tmax = 0.959l = 1617
10105 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.17 w = 1/[σ2(Fo2) + (0.0375P)2 + 0.8617P]
where P = (Fo2 + 2Fc2)/3
2491 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C14H12ClN3O2·H2Oγ = 115.755 (2)°
Mr = 307.73V = 701.94 (8) Å3
Triclinic, P1Z = 2
a = 7.1693 (5) ÅMo Kα radiation
b = 7.4964 (4) ŵ = 0.29 mm1
c = 14.5966 (9) ÅT = 296 K
α = 90.138 (2)°0.28 × 0.18 × 0.14 mm
β = 95.835 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2491 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2151 reflections with I > 2σ(I)
Tmin = 0.942, Tmax = 0.959Rint = 0.027
10105 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.17Δρmax = 0.24 e Å3
2491 reflectionsΔρmin = 0.35 e Å3
198 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.33027 (14)0.26260 (13)0.24936 (5)0.0523 (3)
O10.3445 (3)0.2717 (4)0.01706 (15)0.0491 (8)
O20.4191 (3)0.2364 (4)0.25756 (15)0.0544 (8)
N10.1131 (3)0.2425 (3)0.14368 (15)0.0338 (7)
N20.0986 (4)0.2273 (4)0.23701 (15)0.0347 (7)
N30.2974 (4)0.0892 (5)0.53373 (18)0.0523 (10)
C10.0064 (4)0.2462 (4)0.01053 (18)0.0311 (8)
C20.1854 (4)0.2739 (4)0.04006 (19)0.0365 (9)
C30.2156 (5)0.3040 (5)0.1323 (2)0.0505 (11)
C40.0595 (6)0.3026 (5)0.1958 (2)0.0502 (11)
C50.1289 (5)0.2703 (4)0.16794 (19)0.0391 (9)
C60.1630 (4)0.2451 (4)0.07681 (19)0.0347 (8)
C70.0461 (4)0.2199 (4)0.08716 (18)0.0306 (8)
C80.2576 (5)0.1709 (6)0.1141 (2)0.0476 (10)
C90.2671 (4)0.2336 (4)0.28988 (19)0.0343 (9)
C100.2551 (4)0.2337 (4)0.39173 (18)0.0341 (9)
C110.2132 (4)0.3709 (5)0.4384 (2)0.0398 (9)
C120.2188 (5)0.3679 (5)0.5328 (2)0.0500 (11)
C130.2599 (5)0.2246 (6)0.5769 (2)0.0537 (13)
C140.2966 (5)0.0971 (5)0.4425 (2)0.0421 (10)
O30.7770 (3)0.2277 (4)0.34221 (16)0.0478 (8)
H10.314330.260590.070120.0736*
H20.011870.214460.260250.0416*
H30.343200.325290.151400.0608*
H40.081740.323430.257330.0605*
H60.290670.227210.059040.0416*
H8A0.271450.291110.123620.0715*
H8B0.275730.101180.170020.0715*
H8C0.361580.088890.065880.0715*
H110.181800.463390.406440.0478*
H120.195380.460620.566160.0598*
H130.261610.222360.640640.0645*
H140.325500.005450.411250.0505*
H3A0.657 (6)0.217 (5)0.314 (3)0.0574*
H3B0.735 (6)0.139 (5)0.387 (3)0.0574*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0600 (5)0.0632 (5)0.0309 (4)0.0269 (4)0.0066 (3)0.0055 (3)
O10.0391 (12)0.0743 (16)0.0436 (12)0.0329 (12)0.0093 (10)0.0112 (12)
O20.0426 (12)0.1011 (19)0.0355 (12)0.0456 (13)0.0069 (10)0.0129 (12)
N10.0346 (12)0.0435 (14)0.0252 (12)0.0192 (11)0.0011 (9)0.0024 (10)
N20.0313 (12)0.0509 (14)0.0248 (12)0.0209 (11)0.0026 (9)0.0032 (10)
N30.0568 (17)0.079 (2)0.0347 (14)0.0416 (16)0.0083 (12)0.0156 (14)
C10.0344 (14)0.0286 (14)0.0287 (14)0.0127 (12)0.0015 (11)0.0001 (11)
C20.0393 (16)0.0394 (16)0.0347 (15)0.0204 (13)0.0056 (12)0.0032 (12)
C30.0509 (19)0.069 (2)0.0438 (18)0.0342 (18)0.0205 (15)0.0110 (16)
C40.067 (2)0.063 (2)0.0297 (16)0.0352 (19)0.0135 (15)0.0081 (14)
C50.0493 (18)0.0391 (16)0.0281 (14)0.0199 (14)0.0012 (12)0.0013 (12)
C60.0338 (14)0.0366 (15)0.0316 (15)0.0141 (12)0.0012 (11)0.0001 (12)
C70.0314 (14)0.0326 (14)0.0282 (14)0.0148 (12)0.0015 (11)0.0004 (11)
C80.0356 (16)0.079 (2)0.0296 (15)0.0264 (16)0.0031 (12)0.0055 (15)
C90.0307 (14)0.0450 (17)0.0301 (14)0.0197 (13)0.0014 (11)0.0039 (12)
C100.0270 (13)0.0469 (17)0.0267 (14)0.0153 (12)0.0004 (11)0.0020 (12)
C110.0356 (15)0.0473 (17)0.0368 (16)0.0192 (14)0.0000 (12)0.0014 (13)
C120.0470 (18)0.068 (2)0.0382 (17)0.0284 (17)0.0032 (14)0.0074 (16)
C130.053 (2)0.092 (3)0.0261 (16)0.041 (2)0.0038 (14)0.0042 (16)
C140.0458 (17)0.057 (2)0.0322 (16)0.0302 (16)0.0057 (13)0.0064 (14)
O30.0364 (12)0.0757 (17)0.0380 (12)0.0304 (12)0.0052 (9)0.0118 (11)
Geometric parameters (Å, º) top
Cl1—C51.755 (4)C5—C61.376 (4)
O1—C21.349 (4)C7—C81.492 (5)
O2—C91.223 (4)C9—C101.498 (4)
O1—H10.8200C10—C111.385 (4)
O3—H3A0.89 (5)C10—C141.382 (4)
O3—H3B0.91 (4)C11—C121.375 (4)
N1—N21.378 (3)C12—C131.377 (5)
N1—C71.285 (4)C3—H30.9300
N2—C91.348 (4)C4—H40.9300
N3—C141.333 (4)C6—H60.9300
N3—C131.330 (5)C8—H8C0.9600
N2—H20.8600C8—H8A0.9600
C1—C71.479 (4)C8—H8B0.9600
C1—C61.403 (4)C11—H110.9300
C1—C21.412 (4)C12—H120.9300
C2—C31.389 (4)C13—H130.9300
C3—C41.375 (5)C14—H140.9300
C4—C51.370 (6)
C2—O1—H1109.00C9—C10—C14119.0 (3)
H3A—O3—H3B102 (4)C9—C10—C11122.9 (3)
N2—N1—C7120.6 (3)C10—C11—C12118.8 (3)
N1—N2—C9116.3 (3)C11—C12—C13118.5 (3)
C13—N3—C14116.9 (3)N3—C13—C12123.9 (3)
N1—N2—H2122.00N3—C14—C10123.7 (3)
C9—N2—H2122.00C2—C3—H3120.00
C2—C1—C6118.2 (2)C4—C3—H3120.00
C2—C1—C7122.3 (3)C5—C4—H4120.00
C6—C1—C7119.5 (3)C3—C4—H4120.00
C1—C2—C3119.6 (3)C1—C6—H6120.00
O1—C2—C3117.1 (3)C5—C6—H6120.00
O1—C2—C1123.3 (3)C7—C8—H8B109.00
C2—C3—C4120.9 (3)C7—C8—H8C109.00
C3—C4—C5119.7 (3)H8A—C8—H8B110.00
Cl1—C5—C6119.2 (3)H8A—C8—H8C109.00
Cl1—C5—C4119.7 (2)H8B—C8—H8C109.00
C4—C5—C6121.1 (3)C7—C8—H8A109.00
C1—C6—C5120.4 (3)C10—C11—H11121.00
N1—C7—C8124.7 (2)C12—C11—H11121.00
C1—C7—C8120.6 (3)C13—C12—H12121.00
N1—C7—C1114.7 (3)C11—C12—H12121.00
O2—C9—N2122.8 (3)N3—C13—H13118.00
O2—C9—C10121.7 (3)C12—C13—H13118.00
N2—C9—C10115.5 (3)N3—C14—H14118.00
C11—C10—C14118.1 (3)C10—C14—H14118.00
C7—N1—N2—C9173.6 (3)O1—C2—C3—C4178.1 (3)
N2—N1—C7—C1178.2 (2)C1—C2—C3—C41.5 (5)
N2—N1—C7—C81.8 (4)C2—C3—C4—C50.3 (5)
N1—N2—C9—O25.8 (4)C3—C4—C5—Cl1178.5 (3)
N1—N2—C9—C10175.2 (2)C3—C4—C5—C62.0 (5)
C14—N3—C13—C120.8 (6)Cl1—C5—C6—C1178.6 (2)
C13—N3—C14—C101.4 (6)C4—C5—C6—C11.9 (4)
C6—C1—C2—O1178.0 (3)O2—C9—C10—C11126.3 (3)
C6—C1—C2—C31.6 (4)O2—C9—C10—C1450.7 (4)
C7—C1—C2—O12.4 (4)N2—C9—C10—C1154.6 (4)
C7—C1—C2—C3178.0 (3)N2—C9—C10—C14128.4 (3)
C2—C1—C6—C50.1 (4)C9—C10—C11—C12175.7 (3)
C7—C1—C6—C5179.7 (3)C14—C10—C11—C121.3 (5)
C2—C1—C7—N16.1 (4)C9—C10—C14—N3177.6 (3)
C2—C1—C7—C8173.9 (3)C11—C10—C14—N30.4 (5)
C6—C1—C7—N1173.5 (2)C10—C11—C12—C131.9 (5)
C6—C1—C7—C86.6 (4)C11—C12—C13—N30.9 (6)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.842.555 (3)144
N2—H2···O3i0.862.062.898 (4)166
O3—H3A···O20.89 (5)1.88 (5)2.760 (4)171 (3)
O3—H3B···N3ii0.91 (4)2.01 (4)2.885 (4)161 (4)
C8—H8A···Cg2iii0.962.993.763 (4)139
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H12ClN3O2·H2O
Mr307.73
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.1693 (5), 7.4964 (4), 14.5966 (9)
α, β, γ (°)90.138 (2), 95.835 (1), 115.755 (2)
V3)701.94 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.28 × 0.18 × 0.14
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.942, 0.959
No. of measured, independent and
observed [I > 2σ(I)] reflections
10105, 2491, 2151
Rint0.027
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.135, 1.17
No. of reflections2491
No. of parameters198
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.35

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C1–C6 phenyl ring.
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.842.555 (3)144
N2—H2···O3i0.862.062.898 (4)166
O3—H3A···O20.89 (5)1.88 (5)2.760 (4)171 (3)
O3—H3B···N3ii0.91 (4)2.01 (4)2.885 (4)161 (4)
C8—H8A···Cg2iii0.962.993.763 (4)139
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1; (iii) x, y+1, z.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009a). Acta Cryst. E65, o2496.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009b). Acta Cryst. E65, o2899.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds