organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Hydr­­oxy-N′-(2-hydr­­oxy-4-meth­oxy­benzyl­­idene)-3-methyl­benzohydrazide monohydrate

aDepartment of Chemistry and Life Science, Chuzhou University, Chuzhou, Anhui 239000, People's Republic of China
*Correspondence e-mail: hanyouyue@126.com

(Received 26 April 2010; accepted 7 May 2010; online 15 May 2010)

In the title compound, C16H16N2O4·H2O, the dihedral angle between the two benzene rings is 12.4 (2)° and the mol­ecule adopts an E configuration with respect to the C=N bond. There are intra­molecular O—H⋯N and O—H⋯O hydrogen bonds in the hydrazone mol­ecule, which both generate S(6) rings. In the crystal structure, mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds, forming layers parallel to the ab plane. The crystal studied was a non-merohedral twin with a domain ratio of 0.887 (3):0.113 (3).

Related literature

For our previous studies on hydrazones and for background information, see: Han & Zhao (2010a[Han, Y.-Y. & Zhao, Q.-R. (2010a). Acta Cryst. E66, o1025.],b[Han, Y.-Y. & Zhao, Q.-R. (2010b). Acta Cryst. E66, o1026.]). For reference bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16N2O4·H2O

  • Mr = 318.32

  • Monoclinic, P 21 /c

  • a = 4.488 (1) Å

  • b = 13.494 (2) Å

  • c = 26.089 (3) Å

  • β = 91.630 (2)°

  • V = 1579.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.982

  • 3429 measured reflections

  • 3429 independent reflections

  • 1584 reflections with I > 2σ(I)

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.136

  • S = 0.82

  • 3429 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3 0.82 1.80 2.528 (2) 148
O1—H1⋯N1 0.82 1.93 2.650 (2) 146
N2—H2⋯O5 0.90 2.01 2.899 (2) 172
O5—H5B⋯O3i 0.84 1.92 2.745 (2) 167
O5—H5A⋯O1ii 0.84 2.06 2.849 (3) 156
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a continuation of our work on the structural characterization of hydrazones (Han & Zhao, 2010a,b), we repoprt here the crystal structure of the title compound. The title compound, Fig. 1, consists of a hydrazone molecule and a water molecule of crystallization. The dihedral angle between the two benzene rings is 12.4 (2)°. The molecule adopts an E configuration with respect to the CN bond. There are intramolecular O–H···N and O–H···O hydrogen bonds in the hydrazone molecule (Table 1). All the bond lengths are within normal ranges (Allen et al., 1987).

In the crystal structure, molecules are linked through intermolecular N–H···O and O–H···O hydrogen bonds (Table 1) to form layers parallel to the ab plane (Fig. 2).

Related literature top

For our previous studies on hydrazones and for background information, see: Han & Zhao (2010a,b). For reference bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 4-methoxysalicylaldehyde (0.152 g, 1 mmol) and 2-hydroxy-3-methylbenzohydrazide (0.166 g, 1 mmol) in 50 ml me thanol was stirred at room temperature for 1 h. The mixture was filtered to remove impurities, and then left at room temperature. After a few days, colourless blocks of (I) were formed.

Refinement top

The crystal turned out to be a non-merohedral twin (twin law: -1 0 0/0 -1 0/ 0.331 0 1) with a fractional contribution of the minor component of 0.113 (3). Amino H and water H atoms were located from a difference Fourier map and refined isotropically, with N–H, O–H, and H···H distances restrained to 0.90 (1), 0.85 (1), and 1.37 (2) Å, respectively. Other H atoms were positioned geometrically and refined using the riding-model approximation, with C–H = 0.93 or 0.96 Å, O–H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl C and O).

Structure description top

As a continuation of our work on the structural characterization of hydrazones (Han & Zhao, 2010a,b), we repoprt here the crystal structure of the title compound. The title compound, Fig. 1, consists of a hydrazone molecule and a water molecule of crystallization. The dihedral angle between the two benzene rings is 12.4 (2)°. The molecule adopts an E configuration with respect to the CN bond. There are intramolecular O–H···N and O–H···O hydrogen bonds in the hydrazone molecule (Table 1). All the bond lengths are within normal ranges (Allen et al., 1987).

In the crystal structure, molecules are linked through intermolecular N–H···O and O–H···O hydrogen bonds (Table 1) to form layers parallel to the ab plane (Fig. 2).

For our previous studies on hydrazones and for background information, see: Han & Zhao (2010a,b). For reference bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of (I). Hydrogen bonds are shown as dashed lines.
2-Hydroxy-N'-(2-hydroxy-4-methoxybenzylidene)-3-methylbenzohydrazide monohydrate top
Crystal data top
C16H16N2O4·H2OF(000) = 672
Mr = 318.32Dx = 1.339 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1505 reflections
a = 4.488 (1) Åθ = 2.7–24.3°
b = 13.494 (2) ŵ = 0.10 mm1
c = 26.089 (3) ÅT = 298 K
β = 91.630 (2)°Block, colorless
V = 1579.3 (5) Å30.20 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3429 independent reflections
Radiation source: fine-focus sealed tube1584 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 55
Tmin = 0.980, Tmax = 0.982k = 1717
3429 measured reflectionsl = 033
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.0467P)2]
where P = (Fo2 + 2Fc2)/3
3429 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C16H16N2O4·H2OV = 1579.3 (5) Å3
Mr = 318.32Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.488 (1) ŵ = 0.10 mm1
b = 13.494 (2) ÅT = 298 K
c = 26.089 (3) Å0.20 × 0.20 × 0.18 mm
β = 91.630 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3429 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1584 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.982Rint = 0.000
3429 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 0.82Δρmax = 0.17 e Å3
3429 reflectionsΔρmin = 0.19 e Å3
211 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0603 (4)0.34424 (11)0.17742 (7)0.0707 (5)
H10.04160.36190.20240.106*
O20.7266 (4)0.47988 (12)0.05036 (6)0.0682 (5)
O30.4757 (4)0.34626 (11)0.30448 (6)0.0750 (6)
O40.8037 (4)0.30326 (11)0.38168 (7)0.0774 (6)
H40.68570.29400.35750.116*
N10.2277 (4)0.47228 (14)0.23782 (7)0.0548 (5)
N20.4287 (4)0.50268 (14)0.27598 (7)0.0529 (5)
H20.46170.56810.27790.063*
C10.1155 (5)0.52186 (16)0.17115 (8)0.0501 (6)
C20.1891 (5)0.42542 (16)0.15477 (8)0.0507 (6)
C30.3910 (5)0.40878 (16)0.11519 (8)0.0528 (6)
H30.43810.34430.10530.063*
C40.5233 (5)0.48799 (16)0.09027 (8)0.0516 (6)
C50.4595 (6)0.58423 (17)0.10571 (9)0.0579 (6)
H50.55390.63750.08950.069*
C60.2570 (5)0.60000 (17)0.14486 (9)0.0571 (7)
H60.21160.66480.15440.069*
C70.7804 (7)0.38437 (19)0.02939 (10)0.0779 (9)
H7A0.59700.35710.01770.117*
H7B0.92110.38940.00110.117*
H7C0.85970.34200.05520.117*
C80.0983 (5)0.54235 (18)0.21216 (9)0.0533 (6)
H80.14370.60780.22030.064*
C90.5468 (6)0.43567 (17)0.30853 (9)0.0527 (6)
C100.7606 (5)0.46971 (15)0.34903 (8)0.0482 (6)
C110.8747 (6)0.40063 (16)0.38452 (9)0.0560 (6)
C121.0734 (6)0.42876 (19)0.42418 (9)0.0626 (7)
C131.1545 (6)0.52613 (19)0.42727 (10)0.0713 (8)
H131.28650.54620.45340.086*
C141.0462 (6)0.59542 (18)0.39284 (10)0.0693 (8)
H141.10570.66120.39590.083*
C150.8526 (6)0.56823 (17)0.35429 (9)0.0586 (7)
H150.78080.61570.33120.070*
C161.1935 (7)0.3513 (2)0.46131 (10)0.0915 (10)
H16A1.32860.38200.48570.137*
H16B1.29690.30110.44280.137*
H16C1.03130.32180.47900.137*
O50.4807 (5)0.71679 (11)0.27610 (6)0.0787 (6)
H5A0.34140.73830.29400.118*
H5B0.52240.75690.25280.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0818 (13)0.0494 (10)0.0792 (12)0.0028 (9)0.0243 (10)0.0088 (8)
O20.0772 (13)0.0656 (11)0.0607 (10)0.0033 (10)0.0179 (10)0.0049 (8)
O30.1079 (16)0.0447 (10)0.0717 (12)0.0132 (10)0.0130 (10)0.0080 (8)
O40.1079 (16)0.0432 (10)0.0804 (13)0.0016 (10)0.0083 (11)0.0055 (8)
N10.0563 (13)0.0572 (12)0.0505 (11)0.0060 (10)0.0044 (10)0.0047 (10)
N20.0592 (13)0.0466 (10)0.0524 (12)0.0060 (10)0.0057 (10)0.0047 (9)
C10.0540 (15)0.0509 (14)0.0454 (13)0.0051 (12)0.0009 (12)0.0036 (11)
C20.0554 (16)0.0456 (13)0.0512 (13)0.0011 (12)0.0017 (12)0.0048 (11)
C30.0545 (15)0.0468 (13)0.0568 (15)0.0027 (12)0.0045 (12)0.0056 (11)
C40.0558 (15)0.0541 (14)0.0447 (13)0.0000 (12)0.0014 (12)0.0044 (11)
C50.0660 (17)0.0483 (13)0.0591 (15)0.0080 (13)0.0030 (13)0.0046 (11)
C60.0646 (17)0.0449 (13)0.0616 (16)0.0051 (12)0.0000 (14)0.0026 (11)
C70.086 (2)0.0762 (19)0.0699 (18)0.0058 (17)0.0192 (15)0.0202 (15)
C80.0521 (15)0.0521 (14)0.0556 (14)0.0075 (12)0.0005 (12)0.0052 (12)
C90.0694 (17)0.0417 (13)0.0470 (13)0.0014 (12)0.0046 (12)0.0046 (11)
C100.0573 (15)0.0429 (12)0.0445 (13)0.0017 (11)0.0012 (11)0.0044 (10)
C110.0699 (18)0.0465 (14)0.0518 (14)0.0044 (13)0.0070 (13)0.0021 (11)
C120.0727 (19)0.0635 (16)0.0515 (15)0.0114 (15)0.0028 (13)0.0005 (13)
C130.078 (2)0.0724 (18)0.0620 (17)0.0062 (16)0.0158 (15)0.0129 (14)
C140.086 (2)0.0499 (14)0.0707 (18)0.0079 (14)0.0158 (16)0.0095 (13)
C150.0698 (18)0.0456 (13)0.0601 (15)0.0024 (13)0.0052 (13)0.0020 (11)
C160.112 (3)0.092 (2)0.0700 (19)0.034 (2)0.0149 (17)0.0079 (16)
O50.1172 (17)0.0435 (9)0.0748 (12)0.0068 (10)0.0079 (11)0.0063 (8)
Geometric parameters (Å, º) top
O1—C21.365 (3)C7—H7A0.9600
O1—H10.8208C7—H7B0.9600
O2—C41.369 (3)C7—H7C0.9600
O2—C71.418 (3)C8—H80.9300
O3—C91.252 (3)C9—C101.480 (3)
O4—C111.354 (3)C10—C151.398 (3)
O4—H40.8210C10—C111.400 (3)
N1—C81.287 (3)C11—C121.399 (3)
N1—N21.387 (2)C12—C131.365 (3)
N2—C91.339 (3)C12—C161.514 (3)
N2—H20.8961C13—C141.375 (3)
C1—C61.400 (3)C13—H130.9300
C1—C21.406 (3)C14—C151.361 (3)
C1—C81.443 (3)C14—H140.9300
C2—C31.373 (3)C15—H150.9300
C3—C41.377 (3)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—C51.387 (3)C16—H16C0.9600
C5—C61.364 (3)O5—H5A0.8417
C5—H50.9300O5—H5B0.8395
C6—H60.9300
C2—O1—H1109.3N1—C8—C1121.7 (2)
C4—O2—C7117.94 (18)N1—C8—H8119.2
C11—O4—H4109.6C1—C8—H8119.2
C8—N1—N2115.52 (18)O3—C9—N2120.1 (2)
C9—N2—N1119.55 (19)O3—C9—C10121.2 (2)
C9—N2—H2124.6N2—C9—C10118.68 (19)
N1—N2—H2115.8C15—C10—C11117.8 (2)
C6—C1—C2116.7 (2)C15—C10—C9123.3 (2)
C6—C1—C8120.1 (2)C11—C10—C9118.9 (2)
C2—C1—C8123.2 (2)O4—C11—C12116.6 (2)
O1—C2—C3117.17 (19)O4—C11—C10121.9 (2)
O1—C2—C1121.21 (19)C12—C11—C10121.4 (2)
C3—C2—C1121.6 (2)C13—C12—C11117.9 (2)
C2—C3—C4119.7 (2)C13—C12—C16122.5 (2)
C2—C3—H3120.2C11—C12—C16119.6 (2)
C4—C3—H3120.2C12—C13—C14121.8 (2)
O2—C4—C3124.5 (2)C12—C13—H13119.1
O2—C4—C5115.0 (2)C14—C13—H13119.1
C3—C4—C5120.5 (2)C15—C14—C13120.4 (2)
C6—C5—C4119.4 (2)C15—C14—H14119.8
C6—C5—H5120.3C13—C14—H14119.8
C4—C5—H5120.3C14—C15—C10120.7 (2)
C5—C6—C1122.2 (2)C14—C15—H15119.7
C5—C6—H6118.9C10—C15—H15119.7
C1—C6—H6118.9C12—C16—H16A109.5
O2—C7—H7A109.5C12—C16—H16B109.5
O2—C7—H7B109.5H16A—C16—H16B109.5
H7A—C7—H7B109.5C12—C16—H16C109.5
O2—C7—H7C109.5H16A—C16—H16C109.5
H7A—C7—H7C109.5H16B—C16—H16C109.5
H7B—C7—H7C109.5H5A—O5—H5B111.4
C8—N1—N2—C9172.1 (2)N1—N2—C9—C10179.92 (19)
C6—C1—C2—O1179.1 (2)O3—C9—C10—C15178.3 (2)
C8—C1—C2—O10.3 (4)N2—C9—C10—C151.8 (4)
C6—C1—C2—C30.4 (4)O3—C9—C10—C112.6 (4)
C8—C1—C2—C3179.2 (2)N2—C9—C10—C11177.2 (2)
O1—C2—C3—C4178.7 (2)C15—C10—C11—O4178.4 (2)
C1—C2—C3—C40.8 (4)C9—C10—C11—O42.5 (4)
C7—O2—C4—C37.4 (4)C15—C10—C11—C120.3 (4)
C7—O2—C4—C5174.0 (2)C9—C10—C11—C12178.9 (2)
C2—C3—C4—O2179.9 (2)O4—C11—C12—C13178.5 (3)
C2—C3—C4—C51.6 (4)C10—C11—C12—C130.2 (4)
O2—C4—C5—C6179.3 (2)O4—C11—C12—C160.6 (4)
C3—C4—C5—C62.0 (4)C10—C11—C12—C16179.3 (3)
C4—C5—C6—C11.7 (4)C11—C12—C13—C140.1 (4)
C2—C1—C6—C50.8 (4)C16—C12—C13—C14179.2 (3)
C8—C1—C6—C5179.7 (2)C12—C13—C14—C150.0 (5)
N2—N1—C8—C1179.8 (2)C13—C14—C15—C100.0 (4)
C6—C1—C8—N1178.5 (2)C11—C10—C15—C140.2 (4)
C2—C1—C8—N12.7 (4)C9—C10—C15—C14178.9 (2)
N1—N2—C9—O30.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.821.802.528 (2)148
O1—H1···N10.821.932.650 (2)146
N2—H2···O50.902.012.899 (2)172
O5—H5B···O3i0.841.922.745 (2)167
O5—H5A···O1ii0.842.062.849 (3)156
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H16N2O4·H2O
Mr318.32
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)4.488 (1), 13.494 (2), 26.089 (3)
β (°) 91.630 (2)
V3)1579.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.20 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.980, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
3429, 3429, 1584
Rint0.000
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.136, 0.82
No. of reflections3429
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.19

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O30.821.802.528 (2)148
O1—H1···N10.821.932.650 (2)146
N2—H2···O50.902.012.899 (2)172
O5—H5B···O3i0.841.922.745 (2)167
O5—H5A···O1ii0.842.062.849 (3)156
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Applied Chemistry Key Subject of Anhui Province (No. 200802187 C).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHan, Y.-Y. & Zhao, Q.-R. (2010a). Acta Cryst. E66, o1025.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHan, Y.-Y. & Zhao, Q.-R. (2010b). Acta Cryst. E66, o1026.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds