organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3aR*,7aS*)-1-(p-Tolyl­sulfon­yl)perhydro­indol-2-one

aDepartment of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: fanglei24@googlemail.com

(Received 7 April 2010; accepted 9 April 2010; online 17 April 2010)

In the racemic title compound, C15H19NO3S, the dihedral angle between the planes of the benzene ring and the O=S=O group is 56.92 (7)° and the cyclo­hexane ring adopts a chair conformation.

Related literature

For related structures, see: Brion et al. (1992[Brion, F., Marie, C., Mackiewicz, P., Roul, J. M. & Buendia, J. (1992). Tetrahedron Lett. 33, 4889-4892.]). For the medicinal background, see: De Ponti et al. (1991[De Ponti, F., Marelli, C., D'Angelo, L., Caravaggi, M., Bianco, L., Lecchini, S., Frigo, G. M. & Crema, A. (1991). Eur. J. Clin. Pharmacol. 40, 149-153.]).

[Scheme 1]

Experimental

Crystal data
  • C15H19NO3S

  • Mr = 293.37

  • Orthorhombic, P n a 21

  • a = 15.6509 (12) Å

  • b = 5.9692 (5) Å

  • c = 15.7967 (13) Å

  • V = 1475.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 120 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.946, Tmax = 0.961

  • 7103 measured reflections

  • 2702 independent reflections

  • 2397 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.102

  • S = 1.01

  • 2702 reflections

  • 182 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1189 Friedel pairs

  • Flack parameter: 0.01 (10)

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Trandolapril, a potent angiotensin-converting enzyme (ACE) inhibitor, has been widely used for the treatment of hypertension (De Ponti et al., 1991). However, its synthesis procedure is relatively complicated, especially to construct the stereochemical centers of the molecule. To solve the problem, many methods have been proposed in the past years (Brion et al., 1992). Introducing chiral auxiliary-induced stereoselective groups is one of the most promising synthetic strategies since it requires fewer reactions steps and lead to high enantioselectivity. Currently, using p-toluenesulfonyl group as stereoselectivity-inducing group, we have successfully synthesized the title compound as a key intermediate for the synthesis of trandolapril.

In the compound, the S=O distances are 1.4261 (19) and 1.426 (2) Å, and the angle of O=S=O is 119.20 (12)deg. The angle of the benzene ring and the plane of O=S=O is 56.92 (7) deg. Meanwhile, the cyclohexane portion adpots a chair structure.

Related literature top

For related structures, see: Brion et al. (1992). For the medicinal background, see: De Ponti et al. (1991).

Experimental top

Chloramine-T (2.3 g, 10 mmol) was reacted with iodine (0.2 g, 1 mmol) and cyclohexene (2.05 g, 25 mmol) in acetonitrile (15 ml) for 19 h at room temperature to give N-(p-toluenesulfonyl)-[b,c] -cyclohexeneaziridine-1H-indole-2-one in a yield of 86%. The crude product was directly treated with diethylmalonate (2.4 g, 15 mmol) and sodium ethoxide (1 g, 15 mmol) in THF at room temperature, offering (3aR, 7aS)-N -(p-toluenesulfonyl)- 3-ethoxycarbonyloctahydro-1H-indole-2-one in a yield of 70%. The obtained compound, together with water (0.2 ml) and sodium chloride (0.35 g), was then dissolved in DMF and warmed to 145 deg for 18 h to yield the title compound in 65% yield as colourless blocks.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with C—H = 0.95-1.00 Å, and with Uiso(H) = 1.5 for the H atoms of methyl group and 1.2 Uiso(C) for other H atoms.

Structure description top

Trandolapril, a potent angiotensin-converting enzyme (ACE) inhibitor, has been widely used for the treatment of hypertension (De Ponti et al., 1991). However, its synthesis procedure is relatively complicated, especially to construct the stereochemical centers of the molecule. To solve the problem, many methods have been proposed in the past years (Brion et al., 1992). Introducing chiral auxiliary-induced stereoselective groups is one of the most promising synthetic strategies since it requires fewer reactions steps and lead to high enantioselectivity. Currently, using p-toluenesulfonyl group as stereoselectivity-inducing group, we have successfully synthesized the title compound as a key intermediate for the synthesis of trandolapril.

In the compound, the S=O distances are 1.4261 (19) and 1.426 (2) Å, and the angle of O=S=O is 119.20 (12)deg. The angle of the benzene ring and the plane of O=S=O is 56.92 (7) deg. Meanwhile, the cyclohexane portion adpots a chair structure.

For related structures, see: Brion et al. (1992). For the medicinal background, see: De Ponti et al. (1991).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structure of (I) with 30% displacement ellipsoids.
(3aR*,7aS*)-1-(p-Tolylsulfonyl)perhydroindol-2-one top
Crystal data top
C15H19NO3SF(000) = 624
Mr = 293.37Dx = 1.320 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2285 reflections
a = 15.6509 (12) Åθ = 2.6–25.2°
b = 5.9692 (5) ŵ = 0.23 mm1
c = 15.7967 (13) ÅT = 120 K
V = 1475.8 (2) Å3Block, colorless
Z = 40.25 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
2702 independent reflections
Radiation source: fine-focus sealed tube2397 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scanθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1919
Tmin = 0.946, Tmax = 0.961k = 77
7103 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0603P)2 + 0.1589P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2702 reflectionsΔρmax = 0.24 e Å3
182 parametersΔρmin = 0.17 e Å3
1 restraintAbsolute structure: Flack (1983), 1189 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (10)
Crystal data top
C15H19NO3SV = 1475.8 (2) Å3
Mr = 293.37Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 15.6509 (12) ŵ = 0.23 mm1
b = 5.9692 (5) ÅT = 120 K
c = 15.7967 (13) Å0.25 × 0.20 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
2702 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2397 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.961Rint = 0.024
7103 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.102Δρmax = 0.24 e Å3
S = 1.01Δρmin = 0.17 e Å3
2702 reflectionsAbsolute structure: Flack (1983), 1189 Friedel pairs
182 parametersAbsolute structure parameter: 0.01 (10)
1 restraint
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.00414 (4)0.18513 (9)0.40616 (5)0.03841 (17)
C10.0558 (2)0.0780 (5)0.56190 (17)0.0516 (7)
C20.0387 (2)0.1072 (6)0.62443 (18)0.0629 (9)
H2A0.05090.05770.68300.075*
H2B0.07370.24100.61160.075*
C30.0549 (2)0.1554 (5)0.61272 (16)0.0489 (7)
H3A0.08730.03470.64260.059*
C40.0933 (2)0.3773 (5)0.63948 (19)0.0663 (9)
H4A0.06440.50140.60930.080*
H4B0.08500.39950.70100.080*
C50.1881 (2)0.3783 (6)0.61869 (18)0.0703 (10)
H5A0.21180.52870.63070.084*
H5B0.21780.26940.65570.084*
C60.2056 (2)0.3187 (6)0.5266 (2)0.0691 (10)
H6A0.18560.44310.49030.083*
H6B0.26810.30430.51850.083*
C70.16246 (19)0.1007 (5)0.49752 (18)0.0569 (8)
H7A0.18720.02920.52770.068*
H7B0.17080.07890.43600.068*
C80.06903 (17)0.1222 (4)0.51752 (16)0.0395 (6)
H8A0.04610.25620.48710.047*
C90.10350 (16)0.0904 (4)0.36999 (14)0.0342 (5)
C100.10958 (16)0.1217 (4)0.33444 (15)0.0376 (5)
H10A0.06140.21830.33320.045*
C110.18653 (18)0.1900 (4)0.30096 (15)0.0405 (6)
H11A0.19120.33570.27730.049*
C120.25761 (16)0.0497 (4)0.30111 (15)0.0391 (6)
C130.25008 (16)0.1610 (4)0.33775 (17)0.0403 (6)
H13A0.29810.25850.33850.048*
C140.17402 (17)0.2307 (4)0.37301 (15)0.0374 (6)
H14A0.17000.37370.39910.045*
C150.3410 (2)0.1241 (5)0.26208 (19)0.0546 (7)
H15A0.35810.26810.28660.066*
H15B0.33370.14080.20080.066*
H15C0.38520.01190.27350.066*
N10.01047 (13)0.0708 (3)0.50183 (13)0.0401 (5)
O10.11421 (15)0.2106 (4)0.55905 (13)0.0689 (6)
O20.00807 (12)0.4227 (3)0.41542 (15)0.0541 (6)
O30.06024 (11)0.0901 (3)0.35308 (11)0.0479 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0388 (4)0.0307 (3)0.0457 (3)0.0040 (2)0.0067 (3)0.0048 (3)
C10.0526 (19)0.0666 (18)0.0355 (12)0.0096 (15)0.0052 (12)0.0115 (13)
C20.064 (2)0.089 (2)0.0359 (13)0.0132 (19)0.0076 (14)0.0059 (14)
C30.060 (2)0.0554 (16)0.0316 (11)0.0074 (14)0.0060 (12)0.0037 (11)
C40.096 (3)0.0637 (19)0.0396 (15)0.0170 (18)0.0036 (16)0.0128 (13)
C50.089 (3)0.079 (2)0.0424 (15)0.038 (2)0.0088 (16)0.0009 (14)
C60.073 (2)0.088 (2)0.0465 (16)0.0378 (19)0.0027 (16)0.0060 (15)
C70.046 (2)0.0692 (19)0.0554 (17)0.0109 (14)0.0035 (14)0.0126 (15)
C80.0482 (16)0.0333 (12)0.0370 (12)0.0049 (11)0.0065 (11)0.0023 (10)
C90.0394 (15)0.0287 (11)0.0346 (11)0.0015 (9)0.0004 (11)0.0042 (9)
C100.0437 (16)0.0320 (12)0.0370 (11)0.0077 (10)0.0004 (12)0.0007 (10)
C110.0502 (17)0.0343 (13)0.0370 (12)0.0016 (11)0.0008 (11)0.0045 (9)
C120.0418 (16)0.0415 (13)0.0340 (11)0.0054 (11)0.0030 (10)0.0033 (10)
C130.0375 (16)0.0408 (13)0.0425 (12)0.0045 (10)0.0036 (11)0.0005 (10)
C140.0412 (16)0.0298 (11)0.0414 (11)0.0022 (10)0.0015 (11)0.0017 (10)
C150.047 (2)0.0621 (18)0.0543 (16)0.0116 (14)0.0083 (13)0.0042 (14)
N10.0433 (14)0.0376 (12)0.0394 (11)0.0038 (9)0.0038 (9)0.0045 (9)
O10.0639 (15)0.0967 (17)0.0462 (11)0.0313 (13)0.0031 (10)0.0131 (11)
O20.0524 (13)0.0302 (9)0.0797 (15)0.0061 (8)0.0220 (11)0.0006 (11)
O30.0392 (11)0.0581 (11)0.0463 (10)0.0009 (8)0.0028 (8)0.0126 (8)
Geometric parameters (Å, º) top
S1—O21.4267 (17)C6—H6B0.9900
S1—O31.4281 (19)C7—C81.502 (4)
S1—N11.674 (2)C7—H7A0.9900
S1—C91.750 (2)C7—H7B0.9900
C1—O11.210 (3)C8—N11.493 (3)
C1—N11.406 (4)C8—H8A1.0000
C1—C21.507 (4)C9—C141.386 (3)
C2—C31.505 (5)C9—C101.388 (3)
C2—H2A0.9900C10—C111.377 (4)
C2—H2B0.9900C10—H10A0.9500
C3—C41.514 (4)C11—C121.392 (4)
C3—C81.533 (3)C11—H11A0.9500
C3—H3A1.0000C12—C131.389 (3)
C4—C51.520 (5)C12—C151.510 (4)
C4—H4A0.9900C13—C141.379 (3)
C4—H4B0.9900C13—H13A0.9500
C5—C61.522 (4)C14—H14A0.9500
C5—H5A0.9900C15—H15A0.9800
C5—H5B0.9900C15—H15B0.9800
C6—C71.537 (4)C15—H15C0.9800
C6—H6A0.9900
O2—S1—O3119.03 (12)C8—C7—C6107.0 (3)
O2—S1—N1108.56 (11)C8—C7—H7A110.3
O3—S1—N1105.77 (10)C6—C7—H7A110.3
O2—S1—C9108.42 (10)C8—C7—H7B110.3
O3—S1—C9107.88 (12)C6—C7—H7B110.3
N1—S1—C9106.52 (11)H7A—C7—H7B108.6
O1—C1—N1123.5 (3)N1—C8—C7119.8 (2)
O1—C1—C2129.7 (3)N1—C8—C3100.0 (2)
N1—C1—C2106.8 (2)C7—C8—C3111.0 (2)
C3—C2—C1103.5 (2)N1—C8—H8A108.5
C3—C2—H2A111.1C7—C8—H8A108.5
C1—C2—H2A111.1C3—C8—H8A108.5
C3—C2—H2B111.1C14—C9—C10120.7 (2)
C1—C2—H2B111.1C14—C9—S1120.07 (17)
H2A—C2—H2B109.0C10—C9—S1119.17 (18)
C2—C3—C4121.3 (3)C11—C10—C9119.0 (2)
C2—C3—C8103.7 (2)C11—C10—H10A120.5
C4—C3—C8109.3 (2)C9—C10—H10A120.5
C2—C3—H3A107.3C10—C11—C12121.3 (2)
C4—C3—H3A107.3C10—C11—H11A119.3
C8—C3—H3A107.3C12—C11—H11A119.3
C3—C4—C5109.3 (3)C13—C12—C11118.5 (2)
C3—C4—H4A109.8C13—C12—C15120.7 (2)
C5—C4—H4A109.8C11—C12—C15120.8 (2)
C3—C4—H4B109.8C14—C13—C12121.0 (2)
C5—C4—H4B109.8C14—C13—H13A119.5
H4A—C4—H4B108.3C12—C13—H13A119.5
C4—C5—C6112.4 (3)C13—C14—C9119.4 (2)
C4—C5—H5A109.1C13—C14—H14A120.3
C6—C5—H5A109.1C9—C14—H14A120.3
C4—C5—H5B109.1C12—C15—H15A109.5
C6—C5—H5B109.1C12—C15—H15B109.5
H5A—C5—H5B107.9H15A—C15—H15B109.5
C5—C6—C7113.8 (2)C12—C15—H15C109.5
C5—C6—H6A108.8H15A—C15—H15C109.5
C7—C6—H6A108.8H15B—C15—H15C109.5
C5—C6—H6B108.8C1—N1—C8111.4 (2)
C7—C6—H6B108.8C1—N1—S1119.73 (18)
H6A—C6—H6B107.7C8—N1—S1123.25 (16)

Experimental details

Crystal data
Chemical formulaC15H19NO3S
Mr293.37
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)120
a, b, c (Å)15.6509 (12), 5.9692 (5), 15.7967 (13)
V3)1475.8 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.946, 0.961
No. of measured, independent and
observed [I > 2σ(I)] reflections
7103, 2702, 2397
Rint0.024
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.102, 1.01
No. of reflections2702
No. of parameters182
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.17
Absolute structureFlack (1983), 1189 Friedel pairs
Absolute structure parameter0.01 (10)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

References

First citationBrion, F., Marie, C., Mackiewicz, P., Roul, J. M. & Buendia, J. (1992). Tetrahedron Lett. 33, 4889–4892.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Ponti, F., Marelli, C., D'Angelo, L., Caravaggi, M., Bianco, L., Lecchini, S., Frigo, G. M. & Crema, A. (1991). Eur. J. Clin. Pharmacol. 40, 149–153.  CrossRef PubMed CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds