organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Bromo­phenyl)-2-methyl­propan­amide

aDepartment of Applied Chemistry, Yuncheng University, Yuncheng, Shanxi 044000, People's Republic of China
*Correspondence e-mail: wangjian_tju@126.com

(Received 12 March 2010; accepted 15 March 2010; online 27 March 2010)

In the crystal of the title compound, C10H12BrNO, inversion dimers linked by pairs of N—H⋯O hydrogen bonds generate R22(8) loops. Further N—H⋯O hydrogen bonds link the dimers into sheets propagating in (100).

Related literature

For the sythesis, see: Koltunov et al. (2004[Koltunov, K. Y., Walspurger, S. & Sommer, J. (2004). Eur. J. Org. Chem. pp. 4039-4047.]).

[Scheme 1]

Experimental

Crystal data
  • C10H12BrNO

  • Mr = 242.12

  • Monoclinic, P 21 /c

  • a = 16.425 (8) Å

  • b = 6.135 (3) Å

  • c = 10.152 (5) Å

  • β = 97.613 (7)°

  • V = 1013.9 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.01 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.501, Tmax = 0.644

  • 9829 measured reflections

  • 1787 independent reflections

  • 1333 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.074

  • S = 0.99

  • 1787 reflections

  • 128 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.53 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.89 (1) 2.12 (1) 2.990 (3) 167 (3)
N1—H1B⋯O1ii 0.88 (1) 2.12 (1) 3.002 (3) 173 (3)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) -x, -y+1, -z+2.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]).

Supporting information


Comment top

The reaction of amides towards weak nucleophiles such as nonactivated arenes have very broad utility in organic chemistry. However, little work has been done to investigate it. The title compound was synthesized by a facile method through the reaction of methacrylamide and benzene, catalyzed by AlCl3. In the crystal, the molecules are linked by intermolecular N—H···O hydrogen bonding interactions. Single-crystal X-ray diffraction analysis reveals that the title compound crystallizes in the Monoclinic space group P 21/c.

Related literature top

For the sythesis, see: Koltunov et al. (2004).

Experimental top

A mixture of AlCl3 (0.95 g, 7.1 mmol) and methacrylamide (0.2 g, 2.3 mmol) in benzene (3 ml) was stirred at 25 °C for 3 h, and was then poured over several grams of ice and extracted with CH2Cl2. The organic phase was separated, dried with anhydrous Na2SO4 and concentrated in vacuo to give a solid mixture of 2-methyl-3-phenylpropionamide and 2-methyl-2-phenylpropionamide (0.41 g, 97%) in 2:1 ratio. The title compound was separated by flash column chromatography on silica gel. Colourless prisms of (I) were obtained by recrystallisation from ethanol.

Refinement top

The H atoms were positioned geometrically (C—H=0.95Å or 0.98 Å, N—H=0.88 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. The crystal packing for (I).
2-(4-Bromophenyl)-2-methylpropanamide top
Crystal data top
C10H12BrNOF(000) = 488
Mr = 242.12Dx = 1.586 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3466 reflections
a = 16.425 (8) Åθ = 2.2–27.9°
b = 6.135 (3) ŵ = 4.01 mm1
c = 10.152 (5) ÅT = 113 K
β = 97.613 (7)°Prism, colourless
V = 1013.9 (8) Å30.20 × 0.18 × 0.12 mm
Z = 4
Data collection top
Rigaku Saturn CCD
diffractometer
1787 independent reflections
Radiation source: rotating anode1333 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.090
Detector resolution: 14.63 pixels mm-1θmax = 25.0°, θmin = 2.5°
ω and ϕ scansh = 1919
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 77
Tmin = 0.501, Tmax = 0.644l = 1212
9829 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0242P)2]
where P = (Fo2 + 2Fc2)/3
1787 reflections(Δ/σ)max = 0.001
128 parametersΔρmax = 0.55 e Å3
3 restraintsΔρmin = 0.53 e Å3
Crystal data top
C10H12BrNOV = 1013.9 (8) Å3
Mr = 242.12Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.425 (8) ŵ = 4.01 mm1
b = 6.135 (3) ÅT = 113 K
c = 10.152 (5) Å0.20 × 0.18 × 0.12 mm
β = 97.613 (7)°
Data collection top
Rigaku Saturn CCD
diffractometer
1787 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1333 reflections with I > 2σ(I)
Tmin = 0.501, Tmax = 0.644Rint = 0.090
9829 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0353 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.55 e Å3
1787 reflectionsΔρmin = 0.53 e Å3
128 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.44964 (2)0.60527 (5)0.82615 (4)0.03800 (16)
O10.07026 (12)0.3192 (3)1.10663 (18)0.0161 (5)
N10.05185 (16)0.3190 (4)0.8836 (2)0.0152 (6)
C10.25495 (19)0.4020 (4)1.0149 (3)0.0172 (7)
H10.22300.46241.07730.021*
C20.3202 (2)0.5183 (5)0.9799 (3)0.0211 (7)
H20.33310.65761.01800.025*
C30.36720 (19)0.4317 (5)0.8887 (3)0.0207 (7)
C40.35071 (19)0.2238 (5)0.8383 (3)0.0241 (8)
H40.38440.16110.77920.029*
C50.28481 (19)0.1088 (5)0.8747 (3)0.0178 (7)
H50.27370.03350.84000.021*
C60.23442 (18)0.1968 (4)0.9608 (3)0.0124 (6)
C70.15824 (18)0.0770 (4)0.9971 (3)0.0122 (7)
C80.12810 (19)0.1034 (4)0.8969 (3)0.0170 (7)
H8A0.12230.04390.80660.026*
H8B0.07480.15820.91590.026*
H8C0.16800.22300.90440.026*
C90.17838 (19)0.0249 (4)1.1358 (3)0.0168 (7)
H9A0.22220.13311.13460.025*
H9B0.12920.09601.16080.025*
H9C0.19660.08931.20050.025*
C100.08953 (17)0.2487 (4)1.0001 (3)0.0117 (6)
H1A0.0657 (16)0.283 (4)0.8050 (15)0.025 (9)*
H1B0.0127 (13)0.417 (4)0.885 (2)0.025 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0253 (3)0.0389 (3)0.0549 (3)0.00663 (17)0.0241 (2)0.00685 (18)
O10.0196 (13)0.0189 (11)0.0122 (11)0.0030 (9)0.0113 (9)0.0008 (9)
N10.0169 (15)0.0182 (14)0.0121 (14)0.0065 (12)0.0079 (12)0.0018 (11)
C10.0176 (19)0.0195 (17)0.0161 (16)0.0028 (14)0.0078 (14)0.0009 (13)
C20.0189 (19)0.0212 (17)0.0237 (18)0.0021 (14)0.0049 (15)0.0023 (14)
C30.0107 (18)0.0303 (19)0.0229 (18)0.0003 (14)0.0089 (14)0.0090 (14)
C40.0163 (19)0.0298 (19)0.0294 (19)0.0059 (15)0.0151 (15)0.0007 (15)
C50.0183 (19)0.0183 (17)0.0190 (17)0.0011 (13)0.0103 (14)0.0003 (13)
C60.0131 (17)0.0135 (15)0.0115 (15)0.0032 (13)0.0047 (13)0.0026 (12)
C70.0147 (18)0.0117 (15)0.0119 (15)0.0027 (12)0.0079 (13)0.0001 (12)
C80.0187 (19)0.0152 (16)0.0189 (17)0.0012 (13)0.0084 (14)0.0001 (13)
C90.021 (2)0.0164 (16)0.0146 (16)0.0014 (14)0.0087 (14)0.0013 (13)
C100.0117 (16)0.0101 (15)0.0154 (16)0.0049 (12)0.0090 (14)0.0009 (13)
Geometric parameters (Å, º) top
Br1—C31.897 (3)C5—C61.391 (4)
O1—C101.245 (3)C5—H50.9500
N1—C101.332 (3)C6—C71.537 (4)
N1—H1A0.886 (9)C7—C91.536 (4)
N1—H1B0.882 (9)C7—C81.540 (4)
C1—C21.373 (4)C7—C101.547 (4)
C1—C61.396 (4)C8—H8A0.9800
C1—H10.9500C8—H8B0.9800
C2—C31.387 (4)C8—H8C0.9800
C2—H20.9500C9—H9A0.9800
C3—C41.387 (4)C9—H9B0.9800
C4—C51.383 (4)C9—H9C0.9800
C4—H40.9500
C10—N1—H1A125.1 (16)C9—C7—C6109.3 (2)
C10—N1—H1B117.5 (15)C9—C7—C8108.9 (2)
H1A—N1—H1B117.2 (16)C6—C7—C8112.7 (2)
C2—C1—C6121.5 (3)C9—C7—C10109.2 (2)
C2—C1—H1119.2C6—C7—C10107.4 (2)
C6—C1—H1119.2C8—C7—C10109.3 (2)
C1—C2—C3119.7 (3)C7—C8—H8A109.5
C1—C2—H2120.1C7—C8—H8B109.5
C3—C2—H2120.1H8A—C8—H8B109.5
C4—C3—C2120.0 (3)C7—C8—H8C109.5
C4—C3—Br1120.3 (2)H8A—C8—H8C109.5
C2—C3—Br1119.6 (2)H8B—C8—H8C109.5
C5—C4—C3119.5 (3)C7—C9—H9A109.5
C5—C4—H4120.3C7—C9—H9B109.5
C3—C4—H4120.3H9A—C9—H9B109.5
C4—C5—C6121.5 (3)C7—C9—H9C109.5
C4—C5—H5119.3H9A—C9—H9C109.5
C6—C5—H5119.3H9B—C9—H9C109.5
C5—C6—C1117.7 (3)O1—C10—N1121.1 (3)
C5—C6—C7122.4 (3)O1—C10—C7121.6 (2)
C1—C6—C7119.9 (3)N1—C10—C7117.3 (2)
C6—C1—C2—C30.0 (5)C1—C6—C7—C978.0 (3)
C1—C2—C3—C43.2 (5)C5—C6—C7—C819.2 (4)
C1—C2—C3—Br1173.2 (2)C1—C6—C7—C8160.7 (2)
C2—C3—C4—C53.1 (5)C5—C6—C7—C10139.6 (3)
Br1—C3—C4—C5173.2 (2)C1—C6—C7—C1040.3 (3)
C3—C4—C5—C60.1 (5)C9—C7—C10—O114.6 (4)
C4—C5—C6—C13.1 (4)C6—C7—C10—O1103.8 (3)
C4—C5—C6—C7176.8 (3)C8—C7—C10—O1133.6 (3)
C2—C1—C6—C53.0 (4)C9—C7—C10—N1165.7 (2)
C2—C1—C6—C7176.8 (3)C6—C7—C10—N175.9 (3)
C5—C6—C7—C9102.1 (3)C8—C7—C10—N146.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.89 (1)2.12 (1)2.990 (3)167 (3)
N1—H1B···O1ii0.88 (1)2.12 (1)3.002 (3)173 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC10H12BrNO
Mr242.12
Crystal system, space groupMonoclinic, P21/c
Temperature (K)113
a, b, c (Å)16.425 (8), 6.135 (3), 10.152 (5)
β (°) 97.613 (7)
V3)1013.9 (8)
Z4
Radiation typeMo Kα
µ (mm1)4.01
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerRigaku Saturn CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.501, 0.644
No. of measured, independent and
observed [I > 2σ(I)] reflections
9829, 1787, 1333
Rint0.090
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.074, 0.99
No. of reflections1787
No. of parameters128
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.53

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.886 (9)2.120 (12)2.990 (3)167 (3)
N1—H1B···O1ii0.882 (9)2.124 (10)3.002 (3)173 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1, z+2.
 

Acknowledgements

We thank the College Research Program of Yuncheng University (2008113) for funding.

References

First citationKoltunov, K. Y., Walspurger, S. & Sommer, J. (2004). Eur. J. Org. Chem. pp. 4039–4047.  Web of Science CrossRef Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds