organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(5-Bromo-2-hy­droxy­benzyl­­idene)-4-chloro­benzohydrazide

aCollege of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, People's Republic of China
*Correspondence e-mail: zhoucongsh@gmail.com

(Received 25 February 2010; accepted 27 February 2010; online 6 March 2010)

The title Schiff base, C14H10BrClN2O2, exists in a trans configuration with respect to the C=N bond and the dihedral angle between the two benzene rings is 0.8 (2)°. There is an intra­molecular O—H⋯N hydrogen bond in the mol­ecule, which generates an S(6) loop. In the crystal, inter­molecular N—H⋯O hydrogen bonds link adjacent mol­ecules into extended chains propagating along the c-axis direction.

Related literature

For background to the biological properties of Schiff bases, see: Ritter et al. (2009[Ritter, E., Przybylski, P., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 241-249.]); Bagihalli et al. (2008[Bagihalli, G. B., Avaji, P. G., Patil, S. A. & Badami, P. S. (2008). Eur. J. Med. Chem. 43, 2639-2649.]). For related structures, see: Fun et al. (2008[Fun, H.-K., Chantrapromma, S., Jana, S., Hazra, A. & Goswami, S. (2008). Acta Cryst. E64, o175-o176.]); Shafiq et al. (2009[Shafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2501.]); Goh et al. (2010[Goh, J. H., Fun, H.-K., Vinayaka, A. C. & Kalluraya, B. (2010). Acta Cryst. E66, o24.]). Zhou et al. (2009[Zhou, C.-S., Hou, H.-Y. & Yang, T. (2009). Z. Kristallogr. New Cryst. Struct. 224, 37-38.]); Zhou & Yang (2009[Zhou, C.-S. & Yang, T. (2009). Z. Kristallogr. New Cryst. Struct. 224, 39-40.], 2010a[Zhou, C.-S. & Yang, T. (2010a). Acta Cryst. E66, o290.],b[Zhou, C.-S. & Yang, T. (2010b). Acta Cryst. E66, o365.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10BrClN2O2

  • Mr = 353.60

  • Monoclinic, P 21 /n

  • a = 5.893 (2) Å

  • b = 31.708 (11) Å

  • c = 7.437 (3) Å

  • β = 92.017 (8)°

  • V = 1388.8 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.15 mm−1

  • T = 298 K

  • 0.17 × 0.15 × 0.15 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.616, Tmax = 0.649

  • 7670 measured reflections

  • 2661 independent reflections

  • 1555 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.119

  • S = 1.02

  • 2661 reflections

  • 185 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.51 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.93 2.642 (4) 145
N2—H2⋯O2i 0.90 (1) 1.96 (2) 2.829 (3) 163 (4)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Some Schiff bases possess biological properties, such as antibacterial, antimicrobial, and antitumor activities (Ritter et al., 2009; Bagihalli et al., 2008). Recently, a large number of Schiff bases derived from the reaction of aldehydes with benzohydrazides have been reported (Fun et al., 2008; Shafiq et al., 2009; Goh et al., 2010). As a continuation of these studies, in this paper, the crystal structure of the title Schiff base, (I), derived from the condensing of 5-bromo-2-hydroxybenzaldehyde with 4-chlorobenzohydrazide in methanol is reported.

In the title compound, Fig. 1, all the bond lengths are comparable with those observed in other similar compounds (Zhou et al., 2009; Zhou & Yang, 2009; Zhou & Yang, 2010a,b). The molecule exists in a trans configuration with respect to the acyclic CN bond. There is an intramolecular O—H···N hydrogen bond in the molecule (Table 1). The dihedral angle between the two benzene rings is 0.8 (2)°.

In the crystal structure, intermolecular N—H···O hydrogen bonds link adjacent molecules into extended chains along the c axis (Table 1 and Fig. 2).

Related literature top

For background to the biological properties of Schiff bases, see: Ritter et al. (2009); Bagihalli et al. (2008). For related structures, see: Fun et al. (2008); Shafiq et al. (2009); Goh et al. (2010). Zhou et al. (2009); Zhou & Yang (2009, 2010a,b).

Experimental top

5-Bromo-2-hydroxybenzaldehyde (1.0 mmol, 201 mg) and 4-chlorobenzohydrazide (1.0 mmol, 170 mg) were dissolved in a methanol solution (30 ml). The mixture was stirred for 30 min at room temperature. The resulting solution was left in air for a few days, yielding colourless blocks of (I).

Refinement top

H2 attached to N2 was located in a difference map and refined with N—H distance restrained to 0.90 (1)Å. The remaining H atoms were positioned geometrically, with C—H distances of 0.93 Å, O—H distance of 0.82 Å, and refined using a riding model, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The packing of (I), viewed along the a axis. Hydrogen bonds are drawn as dashed lines.
N'-(5-Bromo-2-hydroxybenzylidene)-4-chlorobenzohydrazide top
Crystal data top
C14H10BrClN2O2F(000) = 704
Mr = 353.60Dx = 1.691 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1461 reflections
a = 5.893 (2) Åθ = 2.5–24.5°
b = 31.708 (11) ŵ = 3.15 mm1
c = 7.437 (3) ÅT = 298 K
β = 92.017 (8)°Block, colourless
V = 1388.8 (9) Å30.17 × 0.15 × 0.15 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD
diffractometer
2661 independent reflections
Radiation source: fine-focus sealed tube1555 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 25.9°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.616, Tmax = 0.649k = 3836
7670 measured reflectionsl = 95
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0584P)2]
where P = (Fo2 + 2Fc2)/3
2661 reflections(Δ/σ)max < 0.001
185 parametersΔρmax = 0.58 e Å3
1 restraintΔρmin = 0.51 e Å3
Crystal data top
C14H10BrClN2O2V = 1388.8 (9) Å3
Mr = 353.60Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.893 (2) ŵ = 3.15 mm1
b = 31.708 (11) ÅT = 298 K
c = 7.437 (3) Å0.17 × 0.15 × 0.15 mm
β = 92.017 (8)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2661 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1555 reflections with I > 2σ(I)
Tmin = 0.616, Tmax = 0.649Rint = 0.043
7670 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.58 e Å3
2661 reflectionsΔρmin = 0.51 e Å3
185 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.22343 (9)0.007519 (14)0.69748 (8)0.0934 (3)
Cl10.31634 (18)0.42871 (3)0.73651 (14)0.0726 (4)
N10.3457 (5)0.20659 (9)0.8247 (3)0.0456 (7)
N20.2126 (5)0.24185 (9)0.7948 (4)0.0508 (8)
O10.7208 (4)0.16526 (8)0.9180 (4)0.0621 (7)
H10.64220.18630.89990.093*
O20.4098 (4)0.27888 (7)1.0046 (3)0.0604 (7)
C10.3853 (6)0.13282 (10)0.7884 (4)0.0418 (8)
C20.6036 (6)0.13063 (12)0.8651 (4)0.0479 (9)
C30.7070 (6)0.09163 (14)0.8872 (5)0.0617 (11)
H30.85390.09020.93690.074*
C40.5988 (7)0.05541 (13)0.8381 (5)0.0665 (11)
H40.67020.02950.85530.080*
C50.3815 (7)0.05740 (11)0.7622 (5)0.0561 (10)
C60.2773 (6)0.09556 (11)0.7367 (4)0.0485 (9)
H60.13200.09660.68400.058*
C70.2645 (6)0.17218 (11)0.7635 (4)0.0446 (9)
H70.12470.17230.70150.054*
C80.2553 (6)0.27691 (10)0.8913 (5)0.0430 (8)
C90.1038 (5)0.31345 (10)0.8524 (4)0.0385 (8)
C100.1114 (6)0.30975 (11)0.7758 (4)0.0470 (9)
H100.17000.28320.74910.056*
C110.2404 (6)0.34505 (12)0.7387 (5)0.0506 (9)
H110.38500.34250.68560.061*
C120.1537 (6)0.38413 (11)0.7806 (4)0.0471 (9)
C130.0603 (6)0.38863 (11)0.8575 (4)0.0511 (9)
H130.11840.41530.88380.061*
C140.1861 (6)0.35333 (11)0.8947 (4)0.0465 (9)
H140.32970.35610.94950.056*
H20.107 (5)0.2405 (12)0.705 (4)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1054 (5)0.0446 (3)0.1297 (5)0.0038 (2)0.0018 (3)0.0039 (3)
Cl10.0765 (8)0.0562 (7)0.0844 (8)0.0210 (5)0.0079 (6)0.0056 (5)
N10.0462 (18)0.0458 (18)0.0441 (17)0.0073 (14)0.0094 (13)0.0009 (13)
N20.055 (2)0.0462 (19)0.050 (2)0.0044 (15)0.0177 (14)0.0068 (15)
O10.0459 (15)0.0723 (18)0.0670 (18)0.0040 (13)0.0124 (13)0.0054 (15)
O20.0676 (17)0.0470 (15)0.0639 (17)0.0021 (13)0.0335 (14)0.0001 (12)
C10.043 (2)0.046 (2)0.037 (2)0.0041 (16)0.0006 (15)0.0014 (15)
C20.046 (2)0.057 (2)0.040 (2)0.0024 (18)0.0003 (17)0.0009 (17)
C30.044 (2)0.079 (3)0.062 (3)0.019 (2)0.0053 (18)0.008 (2)
C40.068 (3)0.060 (3)0.071 (3)0.024 (2)0.003 (2)0.008 (2)
C50.065 (3)0.047 (2)0.057 (2)0.0047 (19)0.006 (2)0.0083 (17)
C60.048 (2)0.045 (2)0.052 (2)0.0037 (16)0.0027 (17)0.0042 (16)
C70.043 (2)0.048 (2)0.042 (2)0.0044 (17)0.0053 (16)0.0019 (16)
C80.041 (2)0.043 (2)0.045 (2)0.0061 (15)0.0073 (17)0.0019 (16)
C90.042 (2)0.0411 (19)0.0325 (18)0.0023 (15)0.0044 (15)0.0008 (15)
C100.051 (2)0.042 (2)0.048 (2)0.0024 (16)0.0004 (17)0.0065 (16)
C110.048 (2)0.053 (3)0.051 (2)0.0031 (18)0.0027 (17)0.0043 (17)
C120.056 (2)0.045 (2)0.041 (2)0.0075 (17)0.0085 (17)0.0042 (16)
C130.060 (3)0.041 (2)0.052 (2)0.0033 (18)0.0023 (18)0.0062 (17)
C140.045 (2)0.050 (2)0.045 (2)0.0046 (17)0.0068 (16)0.0041 (16)
Geometric parameters (Å, º) top
Br1—C51.889 (4)C4—H40.9300
Cl1—C121.733 (4)C5—C61.367 (5)
N1—C71.269 (4)C6—H60.9300
N1—N21.379 (4)C7—H70.9300
N2—C81.342 (4)C8—C91.485 (4)
N2—H20.898 (10)C9—C101.377 (4)
O1—C21.349 (4)C9—C141.387 (4)
O1—H10.8200C10—C111.376 (5)
O2—C81.220 (4)C10—H100.9300
C1—C61.390 (5)C11—C121.372 (5)
C1—C21.391 (5)C11—H110.9300
C1—C71.445 (5)C12—C131.373 (5)
C2—C31.386 (5)C13—C141.366 (5)
C3—C41.358 (5)C13—H130.9300
C3—H30.9300C14—H140.9300
C4—C51.383 (5)
C7—N1—N2115.7 (3)N1—C7—H7119.4
C8—N2—N1119.4 (3)C1—C7—H7119.4
C8—N2—H2123 (3)O2—C8—N2122.2 (3)
N1—N2—H2117 (3)O2—C8—C9121.6 (3)
C2—O1—H1109.5N2—C8—C9116.2 (3)
C6—C1—C2118.6 (3)C10—C9—C14118.8 (3)
C6—C1—C7118.7 (3)C10—C9—C8123.6 (3)
C2—C1—C7122.7 (3)C14—C9—C8117.7 (3)
O1—C2—C3118.3 (3)C11—C10—C9120.6 (3)
O1—C2—C1122.4 (3)C11—C10—H10119.7
C3—C2—C1119.3 (3)C9—C10—H10119.7
C4—C3—C2121.5 (4)C12—C11—C10119.3 (3)
C4—C3—H3119.2C12—C11—H11120.3
C2—C3—H3119.2C10—C11—H11120.3
C3—C4—C5119.4 (4)C11—C12—C13121.2 (3)
C3—C4—H4120.3C11—C12—Cl1119.6 (3)
C5—C4—H4120.3C13—C12—Cl1119.2 (3)
C6—C5—C4120.1 (4)C14—C13—C12118.9 (3)
C6—C5—Br1119.4 (3)C14—C13—H13120.5
C4—C5—Br1120.5 (3)C12—C13—H13120.5
C5—C6—C1121.0 (3)C13—C14—C9121.2 (3)
C5—C6—H6119.5C13—C14—H14119.4
C1—C6—H6119.5C9—C14—H14119.4
N1—C7—C1121.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.932.642 (4)145
N2—H2···O2i0.90 (1)1.96 (2)2.829 (3)163 (4)
Symmetry code: (i) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC14H10BrClN2O2
Mr353.60
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)5.893 (2), 31.708 (11), 7.437 (3)
β (°) 92.017 (8)
V3)1388.8 (9)
Z4
Radiation typeMo Kα
µ (mm1)3.15
Crystal size (mm)0.17 × 0.15 × 0.15
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.616, 0.649
No. of measured, independent and
observed [I > 2σ(I)] reflections
7670, 2661, 1555
Rint0.043
(sin θ/λ)max1)0.613
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.119, 1.02
No. of reflections2661
No. of parameters185
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.58, 0.51

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.932.642 (4)145
N2—H2···O2i0.898 (10)1.957 (15)2.829 (3)163 (4)
Symmetry code: (i) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors acknowledge support of this project by Hunan Provincial Natural Science Foundation of China Scientific Research (09JJ6022) and the Fund of Hunan Provincial Education Department (08B031), People's Republic of China.

References

First citationBagihalli, G. B., Avaji, P. G., Patil, S. A. & Badami, P. S. (2008). Eur. J. Med. Chem. 43, 2639–2649.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFun, H.-K., Chantrapromma, S., Jana, S., Hazra, A. & Goswami, S. (2008). Acta Cryst. E64, o175–o176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGoh, J. H., Fun, H.-K., Vinayaka, A. C. & Kalluraya, B. (2010). Acta Cryst. E66, o24.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRitter, E., Przybylski, P., Brzezinski, B. & Bartl, F. (2009). Curr. Org. Chem. 13, 241–249.  Web of Science CrossRef CAS Google Scholar
First citationShafiq, Z., Yaqub, M., Tahir, M. N., Hussain, A. & Iqbal, M. S. (2009). Acta Cryst. E65, o2501.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, C.-S., Hou, H.-Y. & Yang, T. (2009). Z. Kristallogr. New Cryst. Struct. 224, 37–38.  CAS Google Scholar
First citationZhou, C.-S. & Yang, T. (2009). Z. Kristallogr. New Cryst. Struct. 224, 39–40.  CAS Google Scholar
First citationZhou, C.-S. & Yang, T. (2010a). Acta Cryst. E66, o290.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhou, C.-S. & Yang, T. (2010b). Acta Cryst. E66, o365.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds