metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2,2′-Bi­pyridine-κ2N,N′)bis­­(N-ethyl-N-methyl­di­thio­carbamato-κ2S,S′)zinc(II)

aSchool of Chemical Sciences, Universiti Kebangbaan Malaysia, 43600 Bangi, Malaysia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 19 January 2010; accepted 20 January 2010; online 30 January 2010)

The complete mol­ecule of the title compound, [Zn(C4H8NS2)2(C10H8N2)], is generated by crystallographic twofold symmetry, with the Zn atom lying on the rotation axis; the axis also bis­ects the central C—C bond of the 2,2′-bipyridine mol­ecule. The metal atom is chelated by two S,S′-bidentate dithio­carbamate anions and the N,N′-bidentate heterocycle, resulting in a distorted cis-ZnN2S4 octa­hedral geometry. The methyl and ethyl groups of the anion are statistically disordered.

Related literature

For other 2,2′-bipyridine adducts of zinc dithio­arbamates, see: Ali et al. (2006[Ali, B. F., Al-Sou'od, K. A., Al-Far, R. & Judeh, Z. (2006). Struct. Chem. 17, 423-429.]); Deng et al. (2007[Deng, Y.-H., Liu, J., Li, N., Yang, Y.-L. & Ma, H.-W. (2007). Huaxue Xuebao, 65, 2868-2874.]); Jie & Tiekink (2002[Jie, Q. & Tiekink, E. R. T. (2002). Main Group Met. Chem. 25, 317-318.]); Lai & Tiekink (2004[Lai, C. S. & Tiekink, E. R. T. (2004). Appl. Organomet. Chem. 18, 197-198.]); Manohar et al. (1998[Manohar, A., Venkatachalam, V., Ramalingam, K., Thirumaran, S., Bocelli, G. & Cantoni, A. (1998). J. Chem. Crystallogr. 28, 861-866.]); Thirumaran et al. (1999[Thirumaran, S., Ramalingam, K., Bocelli, G. & Cantoni, A. (1999). Polyhedron, 18, 925-930.]); Yin et al. (2004[Yin, H.-D., Wang, C.-H. & Xing, Q.-J. (2004). Indian J. Chem. Sect. A, 43, 1911-1914.]); Zemskova et al. (1993[Zemskova, S. M., Glinskaya, L. A., Durasov, V. B., Klevtsova, R. F. & Larionov, S. V. (1993). Zh. Strukt. Khim. 34, 155-157.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C4H8NS2)2(C10H8N2)]

  • Mr = 490.02

  • Orthorhombic, P n a a

  • a = 16.9478 (7) Å

  • b = 19.3282 (8) Å

  • c = 6.6572 (3) Å

  • V = 2180.70 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.52 mm−1

  • T = 293 K

  • 0.45 × 0.40 × 0.35 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.548, Tmax = 0.618

  • 13725 measured reflections

  • 2513 independent reflections

  • 2252 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.091

  • S = 1.04

  • 2513 reflections

  • 136 parameters

  • 14 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected geometric parameters (Å, °)

Zn1—N2 2.1742 (15)
Zn1—S2 2.5259 (5)
Zn1—S1 2.5261 (6)
N2—Zn1—N2i 75.24 (8)
S2—Zn1—S1 70.884 (17)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). publCIF. In preparation.]).

Supporting information


Related literature top

For other 2,2'-bipyridine adducts of zinc dithioarbamates, see: Ali et al. (2006); Deng et al. (2007); Jie & Tiekink (2002); Lai & Tiekink (2004); Manohar et al. (1998); Thirumaran et al. (1999); Yin et al. (2004); Zemskova et al. (1993).

Experimental top

Zinc chloride (10 mmol), ethylmethylamine (20 mmol), carbon disulfide (20 mmol), 2,2'-bipyridine and ammonia (10 ml) were reacted in ethanol (30 ml) at 277 K to produce a white solid. This was collected and recrystallized from ethanol to yield colourless blocks of (I).

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 to 0.97 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C). The methyl group is disordered with respect to the ethyl group. Both were refined as ethyl groups, but the methyl carbon atoms were refined with 0.5 occupancy each. The carbon-carbon distance was restrained to 1.50±0.01 Å; the anisotorpic temperature factors of the half-occupancy atoms were restrained to be nearly isotropic.

Structure description top

For other 2,2'-bipyridine adducts of zinc dithioarbamates, see: Ali et al. (2006); Deng et al. (2007); Jie & Tiekink (2002); Lai & Tiekink (2004); Manohar et al. (1998); Thirumaran et al. (1999); Yin et al. (2004); Zemskova et al. (1993).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of (I) at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. The disorder is not shown.
(2,2'-Bipyridine-κ2N,N')bis(N-ethyl-N- methyldithiocarbamato-κ2S,S')zinc(II) top
Crystal data top
[Zn(C4H8NS2)2(C10H8N2)]F(000) = 1016
Mr = 490.02Dx = 1.493 Mg m3
Orthorhombic, PnaaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2bcCell parameters from 6268 reflections
a = 16.9478 (7) Åθ = 2.4–27.5°
b = 19.3282 (8) ŵ = 1.52 mm1
c = 6.6572 (3) ÅT = 293 K
V = 2180.70 (16) Å3Block, colorless
Z = 40.45 × 0.40 × 0.35 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2513 independent reflections
Radiation source: fine-focus sealed tube2252 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2022
Tmin = 0.548, Tmax = 0.618k = 2524
13725 measured reflectionsl = 58
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.6285P]
where P = (Fo2 + 2Fc2)/3
2513 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.35 e Å3
14 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Zn(C4H8NS2)2(C10H8N2)]V = 2180.70 (16) Å3
Mr = 490.02Z = 4
Orthorhombic, PnaaMo Kα radiation
a = 16.9478 (7) ŵ = 1.52 mm1
b = 19.3282 (8) ÅT = 293 K
c = 6.6572 (3) Å0.45 × 0.40 × 0.35 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2513 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2252 reflections with I > 2σ(I)
Tmin = 0.548, Tmax = 0.618Rint = 0.019
13725 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03014 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
2513 reflectionsΔρmin = 0.22 e Å3
136 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.292606 (17)0.25000.25000.03998 (12)
S10.27352 (4)0.14351 (3)0.03544 (9)0.05648 (17)
S20.19702 (3)0.16932 (3)0.42289 (8)0.04706 (15)
N10.16951 (11)0.05783 (10)0.2003 (3)0.0545 (4)
N20.39422 (8)0.21503 (8)0.4216 (2)0.0379 (3)
C10.20922 (11)0.11716 (11)0.2174 (3)0.0424 (4)
C20.18288 (18)0.00855 (16)0.0390 (5)0.0884 (10)0.50
H2A0.22860.02380.03670.106*0.50
H2B0.19610.03570.09900.106*0.50
C30.1206 (3)0.0020 (3)0.0968 (8)0.0731 (15)0.50
H3A0.13260.04070.18190.110*0.50
H3B0.11360.03870.17750.110*0.50
H3C0.07290.01130.02370.110*0.50
C2'0.18288 (18)0.00855 (16)0.0390 (5)0.0884 (10)0.50
H2'A0.16520.03640.08040.106*0.50
H2'B0.23820.00680.00820.106*0.50
H2'C0.15410.02270.07810.106*0.50
C40.11331 (16)0.03509 (15)0.3511 (4)0.0725 (7)0.50
H4A0.13980.02960.47750.087*0.50
H4B0.09080.00830.31090.087*0.50
H4C0.07220.06900.36440.087*0.50
C4'0.11331 (16)0.03509 (15)0.3511 (4)0.0725 (7)0.50
H4'A0.12280.01340.37960.087*0.50
H4'B0.12280.06080.47390.087*0.50
C5'0.0321 (4)0.0434 (5)0.2957 (14)0.114 (3)0.50
H5'A0.00040.01540.38160.171*0.50
H5'B0.02490.02930.15870.171*0.50
H5'C0.01730.09110.31000.171*0.50
C60.39024 (12)0.18074 (10)0.5947 (3)0.0453 (4)
H60.34080.17030.64700.054*
C70.45602 (13)0.16000 (11)0.6997 (3)0.0492 (5)
H70.45110.13620.82050.059*
C80.52930 (13)0.17520 (11)0.6222 (3)0.0512 (5)
H80.57480.16170.68970.061*
C90.53413 (11)0.21061 (11)0.4434 (3)0.0468 (4)
H90.58310.22120.38820.056*
C100.46553 (10)0.23031 (9)0.3464 (3)0.0367 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.03265 (18)0.04134 (19)0.0460 (2)0.0000.0000.00225 (12)
S10.0583 (3)0.0555 (3)0.0557 (3)0.0150 (2)0.0193 (3)0.0093 (2)
S20.0409 (3)0.0566 (3)0.0437 (3)0.0025 (2)0.00315 (19)0.0026 (2)
N10.0479 (10)0.0455 (9)0.0701 (12)0.0080 (8)0.0102 (9)0.0039 (8)
N20.0354 (7)0.0381 (7)0.0402 (8)0.0013 (6)0.0004 (6)0.0002 (6)
C10.0357 (9)0.0422 (10)0.0493 (10)0.0005 (7)0.0022 (7)0.0024 (8)
C20.0759 (18)0.0659 (16)0.123 (3)0.0218 (14)0.0324 (18)0.0391 (18)
C30.097 (4)0.063 (3)0.059 (3)0.017 (3)0.009 (3)0.012 (2)
C2'0.0759 (18)0.0659 (16)0.123 (3)0.0218 (14)0.0324 (18)0.0391 (18)
C40.0698 (16)0.0695 (15)0.0783 (17)0.0251 (13)0.0123 (14)0.0122 (13)
C4'0.0698 (16)0.0695 (15)0.0783 (17)0.0251 (13)0.0123 (14)0.0122 (13)
C5'0.086 (4)0.124 (6)0.132 (6)0.010 (4)0.025 (4)0.026 (5)
C60.0455 (10)0.0459 (10)0.0444 (10)0.0039 (8)0.0010 (8)0.0047 (8)
C70.0581 (12)0.0442 (10)0.0453 (10)0.0011 (8)0.0068 (9)0.0067 (9)
C80.0490 (11)0.0497 (11)0.0549 (12)0.0086 (9)0.0128 (10)0.0034 (9)
C90.0347 (9)0.0524 (11)0.0533 (11)0.0049 (8)0.0018 (8)0.0007 (9)
C100.0342 (8)0.0355 (8)0.0402 (10)0.0007 (6)0.0008 (7)0.0024 (7)
Geometric parameters (Å, º) top
Zn1—N22.1742 (15)C3—H3B0.9600
Zn1—N2i2.1742 (15)C3—H3C0.9600
Zn1—S22.5259 (5)C4—H4A0.9600
Zn1—S2i2.5259 (5)C4—H4B0.9600
Zn1—S12.5261 (6)C4—H4C0.9600
Zn1—S1i2.5261 (6)C5'—H5'A0.9600
S1—C11.707 (2)C5'—H5'B0.9600
S2—C11.712 (2)C5'—H5'C0.9600
N1—C11.334 (3)C6—C71.376 (3)
N1—C41.452 (3)C6—H60.9300
N1—C21.453 (3)C7—C81.377 (3)
N2—C61.331 (2)C7—H70.9300
N2—C101.341 (2)C8—C91.375 (3)
C2—C31.405 (5)C8—H80.9300
C2—H2A0.9700C9—C101.384 (3)
C2—H2B0.9700C9—H90.9300
C3—H3A0.9600C10—C10i1.492 (4)
N2—Zn1—N2i75.24 (8)C3—C2—H2A108.1
N2—Zn1—S294.40 (4)N1—C2—H2A108.1
N2i—Zn1—S2159.93 (4)C3—C2—H2B108.1
N2—Zn1—S2i159.93 (4)N1—C2—H2B108.1
N2i—Zn1—S2i94.40 (4)H2A—C2—H2B107.3
S2—Zn1—S2i100.22 (3)N1—C4—H4A109.5
N2—Zn1—S198.35 (4)N1—C4—H4B109.5
N2i—Zn1—S193.31 (4)N1—C4—H4C109.5
S2—Zn1—S170.884 (17)H5'A—C5'—H5'B109.5
S2i—Zn1—S199.39 (2)H5'A—C5'—H5'C109.5
N2—Zn1—S1i93.31 (4)H5'B—C5'—H5'C109.5
N2i—Zn1—S1i98.35 (4)N2—C6—C7122.96 (18)
S2—Zn1—S1i99.39 (2)N2—C6—H6118.5
S2i—Zn1—S1i70.884 (17)C7—C6—H6118.5
S1—Zn1—S1i165.28 (3)C8—C7—C6118.6 (2)
C1—S1—Zn185.62 (7)C8—C7—H7120.7
C1—S2—Zn185.53 (7)C6—C7—H7120.7
C1—N1—C4122.2 (2)C7—C8—C9118.97 (19)
C1—N1—C2123.2 (2)C7—C8—H8120.5
C4—N1—C2114.5 (2)C9—C8—H8120.5
C6—N2—C10118.59 (16)C8—C9—C10119.40 (19)
C6—N2—Zn1124.71 (12)C8—C9—H9120.3
C10—N2—Zn1116.70 (12)C10—C9—H9120.3
N1—C1—S2120.88 (16)N2—C10—C9121.49 (18)
N1—C1—S1121.19 (16)N2—C10—C10i115.69 (10)
S2—C1—S1117.93 (12)C9—C10—C10i122.82 (12)
C3—C2—N1117.0 (3)
N2—Zn1—S1—C192.98 (8)C2—N1—C1—S2174.1 (2)
N2i—Zn1—S1—C1168.53 (8)C4—N1—C1—S1178.68 (19)
S2—Zn1—S1—C11.19 (7)C2—N1—C1—S16.0 (3)
S2i—Zn1—S1—C196.46 (7)Zn1—S2—C1—N1178.01 (18)
S1i—Zn1—S1—C149.05 (7)Zn1—S2—C1—S11.87 (11)
N2—Zn1—S2—C198.50 (8)Zn1—S1—C1—N1178.01 (18)
N2i—Zn1—S2—C140.79 (14)Zn1—S1—C1—S21.87 (11)
S2i—Zn1—S2—C195.31 (7)C1—N1—C2—C3114.6 (4)
S1—Zn1—S2—C11.18 (7)C4—N1—C2—C369.8 (4)
S1i—Zn1—S2—C1167.40 (7)C10—N2—C6—C70.3 (3)
N2i—Zn1—N2—C6179.12 (19)Zn1—N2—C6—C7179.41 (16)
S2—Zn1—N2—C618.34 (15)N2—C6—C7—C80.2 (3)
S2i—Zn1—N2—C6118.46 (16)C6—C7—C8—C90.2 (3)
S1—Zn1—N2—C689.64 (15)C7—C8—C9—C100.3 (3)
S1i—Zn1—N2—C681.35 (15)C6—N2—C10—C90.7 (3)
N2i—Zn1—N2—C100.03 (10)Zn1—N2—C10—C9179.93 (14)
S2—Zn1—N2—C10162.50 (13)C6—N2—C10—C10i179.12 (19)
S2i—Zn1—N2—C1060.7 (2)Zn1—N2—C10—C10i0.1 (3)
S1—Zn1—N2—C1091.21 (13)C8—C9—C10—N20.7 (3)
S1i—Zn1—N2—C1097.80 (13)C8—C9—C10—C10i179.1 (2)
C4—N1—C1—S21.2 (3)
Symmetry code: (i) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Zn(C4H8NS2)2(C10H8N2)]
Mr490.02
Crystal system, space groupOrthorhombic, Pnaa
Temperature (K)293
a, b, c (Å)16.9478 (7), 19.3282 (8), 6.6572 (3)
V3)2180.70 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.52
Crystal size (mm)0.45 × 0.40 × 0.35
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.548, 0.618
No. of measured, independent and
observed [I > 2σ(I)] reflections
13725, 2513, 2252
Rint0.019
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.091, 1.04
No. of reflections2513
No. of parameters136
No. of restraints14
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.22

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Zn1—N22.1742 (15)Zn1—S12.5261 (6)
Zn1—S22.5259 (5)
N2—Zn1—N2i75.24 (8)S2—Zn1—S170.884 (17)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

We thank Universiti Kebangsaan Malaysia (UKM-GUP-NBT-08-27-111 and 06-01-02-SF0539) and the University of Malaya for supporting this study.

References

First citationAli, B. F., Al-Sou'od, K. A., Al-Far, R. & Judeh, Z. (2006). Struct. Chem. 17, 423–429.  Web of Science CSD CrossRef CAS Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2000). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeng, Y.-H., Liu, J., Li, N., Yang, Y.-L. & Ma, H.-W. (2007). Huaxue Xuebao, 65, 2868–2874.  CAS Google Scholar
First citationJie, Q. & Tiekink, E. R. T. (2002). Main Group Met. Chem. 25, 317–318.  CrossRef CAS Google Scholar
First citationLai, C. S. & Tiekink, E. R. T. (2004). Appl. Organomet. Chem. 18, 197–198.  Web of Science CSD CrossRef CAS Google Scholar
First citationManohar, A., Venkatachalam, V., Ramalingam, K., Thirumaran, S., Bocelli, G. & Cantoni, A. (1998). J. Chem. Crystallogr. 28, 861–866.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThirumaran, S., Ramalingam, K., Bocelli, G. & Cantoni, A. (1999). Polyhedron, 18, 925–930.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). publCIF. In preparation.  Google Scholar
First citationYin, H.-D., Wang, C.-H. & Xing, Q.-J. (2004). Indian J. Chem. Sect. A, 43, 1911–1914.  Google Scholar
First citationZemskova, S. M., Glinskaya, L. A., Durasov, V. B., Klevtsova, R. F. & Larionov, S. V. (1993). Zh. Strukt. Khim. 34, 155–157.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds