metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1592-m1593

(Di­methyl sulfoxide-κO)di­phenyl­(3-thioxo-3H-1,2-di­thiole-4,5-di­thiol­ato-κ2S4,S5)tin(IV)

aDepartamento de Química Inorgânica, Instituto de Química, Universidade, Federal do Rio de Janeiro, CP 68563, 21941-909 Rio de Janeiro, RJ, Brazil, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, cCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900, Rio de Janeiro, RJ, Brazil, and dCHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 7 November 2009; accepted 11 November 2009; online 18 November 2009)

The Sn atom in the title compound, [Sn(C6H5)2(C3S5)(C2H6OS)], exists within a distorted trigonal-bipyramidal geometry defined by two S atoms of the 1,2-dithiole-3-thione-4,5-dithiol­ate dianion, two ipso-C atoms from the phenyl groups, and the O atom of the dimethyl sulfoxide mol­ecule. In this description, one of the S atoms and the O occupy axial positions. In the crystal, centrosymmetrically related mol­ecules associate via pairs of C—H⋯S contacts, forming dimeric aggregates.

Related literature

For background to the synthesis of dmt compounds, see: Steimecke et al. (1982[Steimecke, G., Sieler, H.-J., Kirmse, R., Dietzch, W. & Hoyer, E. (1982). Phosphorus Sulfur, 12, 237-247.]). For related crystal structures, see: Aupers et al. (1998[Aupers, J. H., Chohan, Z. H., Cox, P. J., Doidge-Harrison, S. M. S. V., Howie, R. A., Khan, A., Spencer, G. M. & Wardell, J. L. (1998). Polyhedron, 17, 4475-4486.]); Khan et al. (1998[Khan, A., Low, J. N., Wardell, J. L. & Ferguson, G. (1998). Acta Cryst. C54, 1399-1401.]); Chohan et al. (1999[Chohan, Z. H., Howie, R. A. & Wardell, J. L. (1999). J. Organomet. Chem. 577, 140-149.]); Bordinhão et al. (2006[Bordinhão, J., Comerlato, N. M., Ferreira, G. B., Howie, R. A., da Silva, C. X. A. & Wardell, J. L. (2006). J. Organomet. Chem. 691, 1598-1605.], 2008[Bordinhão, J., Comerlato, N. M., de Castro Cortás, L., Ferreira, G. B., Howie, R. A. & Wardell, J. L. (2008). J. Organomet. Chem. 693, 763-768.]); Comerlato et al. (2008[Comerlato, N. M., Ferreira, G. B., Howie, R. A., Silva, C. X. A. & Wardell, J. L. (2008). J. Organomet. Chem. 693, 2424-2430.]). For additional analysis of geometry, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C6H5)2(C3S5)(C2H6OS)]

  • Mr = 547.35

  • Monoclinic, P 21 /n

  • a = 11.1420 (5) Å

  • b = 15.7237 (6) Å

  • c = 11.9646 (6) Å

  • β = 96.892 (2)°

  • V = 2080.97 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.83 mm−1

  • T = 120 K

  • 0.24 × 0.16 × 0.10 mm

Data collection
  • Bruker–Nonius 95mm CCD camera on κ-goniostat diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007[Sheldrick, G. M. (2007). SADABS. Version 2007/2. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.536, Tmax = 0.746

  • 22729 measured reflections

  • 4770 independent reflections

  • 3906 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.088

  • S = 1.06

  • 4770 reflections

  • 228 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −1.26 e Å−3

Table 1
Selected bond lengths (Å)

Sn—C4 2.130 (3)
Sn—C10 2.133 (3)
Sn—O1 2.311 (2)
Sn—S1 2.4357 (9)
Sn—S2 2.5582 (9)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯S2i 0.95 2.71 3.599 (4) 157
Symmetry code: (i) -x+2, -y, -z.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Comment top

While several structures of (1,3-dithiole-2-thione-4,5-dithiolato)tin, [Sn-dmit], and (1,3-dithiole-2-one-4,5-dithiolato)tin [Sn-dmio] complexes have been reported (e.g., Comerlato et al., 2008), similar (1,2-dithiole-3-thione-4,5-dithiolato)tin complexes have been essentially neglected, with only one systematic study known (Bordinhão et al., 2006; Bordinhão et al., 2008); see Fig. 1 for chemical structures of dmit, dmio and dmt. The poor solubility of 1,2-dithiole-3-thione-4,5-dithiolato (dmt) complexes has been put forward as a major cause for the limited number of their reported crystal structures. Attempts to obtain good crystals of Ph2Sn(dmt), prepared from reaction of Na2(dmt) and Ph2SnCl2 in MeOH solution, failed as only amorphous material was obtained. However, crystallization of Ph2Sn(dmt) from a DMSO/MeOH solution produced crystals of the DMSO solvate, (I), suitable for the X-Ray study reported herein.

As compounds, R2Sn(dmit) and R2Sn(dmio), having non-functionalized alkyl or aryl R groups (e.g., R = Me, Et, Bu or Ph), are aggregated in both the solid–state and in non-coordinating solvents as a consequence of intermolecular Sn···S interactions., it is assumed that the R2Sn(dmt) analogues are similarly aggregated. The formation of adducts such as [Ph2Sn(dmt)(dmso)] will generally provide coordinatively saturated tin centres and hence result in appreciably more soluble species having essentially non-interacting cations and anions. Structures of ionic species, [Q][R2Sn(dmit)X] and [Q][R2Sn(dmio)X] [Q+ = onium cation, X = halide or pseudohalide], with 5-coordinate tin have also been determined (Chohan et al., 1999; Khan et al., 1998; Aupers et al., 1998).

The Sn atom in (1) is five-coordinate, existing within a C2OS2 donor set defined by a chelating dmt ligand, two ipso-C atoms and the O atom derived from the DMSO molecule, Fig. 2. The coordination geometry is based on a trigonal bipyramid with the S2–Sn–O1 axial angle being 166.52 (6) °. As expected, the Sn–S1equatorial distance of 2.4357 (9) Å is shorter than the Sn–S2axial distance of 2.5582 (9) Å. The coordination geometry is distorted towards trigonal bipyramidal (TP). This is quantified by the value of τ = 0.72, which compares with the ideal values of 1.0 and 0.0 for TP and square pyramidal, respectively (Addison et al., 1984).

The most prominent intermolecular interaction connecting molecules is of the type C–H···S and these occur between centrosymmetric pairs to form loosely associated dimers, Table 1 and Fig. 3.

Related literature top

For background to the synthesis of dmt compounds, see: Steimecke et al. (1982). For related crystal structures, see: Aupers et al. (1998); Khan et al. (1998); Chohan et al. (1999); Bordinhão et al. (2006); Bordinhão et al. (2008); Comerlato et al. (2008). For additional analysis of geometry, see: Addison et al. (1984).

Experimental top

To a stirred suspension of 4,5-bis(benzoylthio)-1,2-dithiole-3-thione (Steimecke et al., 1982) (410 mg, 1 mmol) in methanol (10 ml), under argon, was added a sodium methoxide solution prepared from sodium (150 mg, 6.75 mmol) and methanol (10 ml). To the resulting purple solution of Na2dmt was added with stirring a methanolic solution of Ph2SnCl2 (345 mg, 1 mmol). The reaction mixture was stirred for 1 h, rotary evaporated and the residue washed well with water. The solid residue (535 mg) was dissolved in a mixture of DMSO and MeOH (ca v:v 3:1) and left to slowly recrystallize to give (I); m.pt. 428–431 K (dec.) IR (KBr, cm-1): 1061 (ν C—S), 950, 941 (ν S—O), 910, 827, 720 (ν C=S).

Refinement top

All H atoms were geometrically placed (C–H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The maximum and minimum residual electron density peaks of 0.85 and 1.26 e Å-3, respectively, were located 1.81 Å and 0.82 Å from the S1 and Sn atoms, respectively.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); data reduction: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Preparation of the title compound.
[Figure 2] Fig. 2. Molecular structure (I) showing displacement ellipsoids at the 50% probability level.
[Figure 3] Fig. 3. Supramolecular dimer in (I) mediated by C–H···S contacts (orange dashed lines). Colour code: Sn, orange; S, yellow;O, red; C, grey; and H, green.
(Dimethyl sulfoxide-κO)diphenyl(3-thioxo-3H-1,2-dithiole-4,5-dithiolato- κ2S4,S5)tin(IV) top
Crystal data top
[Sn(C6H5)2(C3S5)(C2H6OS)]F(000) = 1088
Mr = 547.35Dx = 1.747 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 44319 reflections
a = 11.1420 (5) Åθ = 2.9–27.5°
b = 15.7237 (6) ŵ = 1.83 mm1
c = 11.9646 (6) ÅT = 120 K
β = 96.892 (2)°Block, yellow
V = 2080.97 (16) Å30.24 × 0.16 × 0.10 mm
Z = 4
Data collection top
Bruker–Nonius 95mm CCD camera on κ-goniostat
diffractometer
4770 independent reflections
Radiation source: Bruker-Nonius FR591 rotating anode3906 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 2019
Tmin = 0.536, Tmax = 0.746l = 1515
22729 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0404P)2 + 1.7706P]
where P = (Fo2 + 2Fc2)/3
4770 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 1.26 e Å3
Crystal data top
[Sn(C6H5)2(C3S5)(C2H6OS)]V = 2080.97 (16) Å3
Mr = 547.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.1420 (5) ŵ = 1.83 mm1
b = 15.7237 (6) ÅT = 120 K
c = 11.9646 (6) Å0.24 × 0.16 × 0.10 mm
β = 96.892 (2)°
Data collection top
Bruker–Nonius 95mm CCD camera on κ-goniostat
diffractometer
4770 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
3906 reflections with I > 2σ(I)
Tmin = 0.536, Tmax = 0.746Rint = 0.057
22729 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 1.06Δρmax = 0.85 e Å3
4770 reflectionsΔρmin = 1.26 e Å3
228 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.823308 (19)0.079364 (13)0.201486 (19)0.01886 (9)
S10.64254 (8)0.07006 (5)0.29688 (7)0.02196 (18)
S20.68225 (8)0.10256 (6)0.01905 (8)0.0263 (2)
S30.42347 (8)0.12813 (5)0.02069 (8)0.0266 (2)
S40.30214 (8)0.12492 (6)0.09713 (8)0.0302 (2)
S50.35612 (8)0.08574 (6)0.33685 (9)0.0301 (2)
S60.89763 (8)0.13614 (5)0.46902 (8)0.0264 (2)
O10.9096 (2)0.06287 (13)0.38570 (19)0.0218 (5)
C10.5279 (3)0.09377 (19)0.1865 (3)0.0210 (7)
C20.5481 (3)0.1063 (2)0.0763 (3)0.0226 (7)
C30.4068 (3)0.0995 (2)0.2126 (3)0.0249 (7)
C40.8953 (3)0.0427 (2)0.1706 (3)0.0199 (7)
C51.0061 (3)0.0547 (2)0.1308 (3)0.0291 (8)
H51.05620.00730.12000.035*
C61.0440 (3)0.1366 (2)0.1067 (3)0.0349 (9)
H61.12000.14480.07980.042*
C70.9712 (3)0.2061 (2)0.1217 (3)0.0327 (9)
H70.99650.26160.10370.039*
C80.8622 (3)0.1945 (2)0.1626 (3)0.0277 (8)
H80.81260.24230.17350.033*
C90.8241 (3)0.1133 (2)0.1883 (3)0.0216 (7)
H90.74950.10590.21790.026*
C100.9274 (3)0.1927 (2)0.1953 (3)0.0212 (7)
C111.0477 (3)0.1947 (2)0.2438 (3)0.0260 (7)
H111.08420.14430.27580.031*
C121.1145 (3)0.2691 (2)0.2459 (3)0.0331 (9)
H121.19630.26980.27920.040*
C131.0608 (4)0.3427 (2)0.1990 (4)0.0376 (10)
H131.10550.39430.20230.045*
C140.9438 (4)0.3415 (2)0.1480 (3)0.0350 (9)
H140.90850.39190.11470.042*
C150.8763 (3)0.2666 (2)0.1450 (3)0.0270 (8)
H150.79560.26580.10870.032*
C161.0469 (3)0.1532 (2)0.5361 (3)0.0351 (9)
H16A1.08230.09870.56280.053*
H16B1.04430.19170.60020.053*
H16C1.09620.17850.48240.053*
C170.8353 (4)0.0869 (3)0.5831 (4)0.0423 (10)
H17A0.75330.06700.55740.064*
H17B0.83260.12810.64410.064*
H17C0.88580.03840.61050.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01908 (13)0.01369 (12)0.02314 (14)0.00039 (8)0.00013 (9)0.00187 (8)
S10.0222 (4)0.0193 (4)0.0241 (5)0.0009 (3)0.0015 (3)0.0028 (3)
S20.0210 (4)0.0330 (5)0.0243 (5)0.0008 (3)0.0000 (4)0.0059 (4)
S30.0213 (4)0.0276 (4)0.0293 (5)0.0011 (3)0.0039 (4)0.0000 (4)
S40.0194 (4)0.0347 (5)0.0356 (5)0.0019 (4)0.0007 (4)0.0036 (4)
S50.0259 (5)0.0298 (5)0.0360 (6)0.0008 (3)0.0096 (4)0.0007 (4)
S60.0326 (5)0.0183 (4)0.0263 (5)0.0038 (3)0.0041 (4)0.0022 (3)
O10.0270 (13)0.0153 (11)0.0224 (13)0.0015 (9)0.0004 (10)0.0005 (9)
C10.0199 (16)0.0128 (15)0.0292 (19)0.0002 (12)0.0021 (14)0.0015 (13)
C20.0222 (17)0.0168 (15)0.0276 (19)0.0021 (13)0.0011 (14)0.0005 (13)
C30.0210 (17)0.0190 (16)0.034 (2)0.0001 (13)0.0012 (15)0.0006 (14)
C40.0210 (16)0.0172 (15)0.0203 (17)0.0019 (13)0.0024 (13)0.0010 (13)
C50.0271 (19)0.0246 (17)0.036 (2)0.0000 (14)0.0059 (16)0.0053 (16)
C60.031 (2)0.041 (2)0.035 (2)0.0111 (17)0.0121 (17)0.0045 (17)
C70.044 (2)0.0218 (17)0.032 (2)0.0098 (16)0.0041 (17)0.0024 (15)
C80.039 (2)0.0174 (16)0.0254 (19)0.0013 (14)0.0002 (16)0.0044 (14)
C90.0221 (17)0.0195 (16)0.0222 (18)0.0016 (13)0.0013 (14)0.0008 (13)
C100.0257 (17)0.0170 (15)0.0216 (18)0.0003 (13)0.0063 (14)0.0002 (13)
C110.0243 (17)0.0233 (17)0.030 (2)0.0018 (14)0.0027 (15)0.0018 (14)
C120.029 (2)0.034 (2)0.038 (2)0.0086 (16)0.0099 (17)0.0065 (17)
C130.049 (3)0.0236 (18)0.045 (2)0.0145 (17)0.026 (2)0.0081 (17)
C140.050 (2)0.0178 (17)0.041 (2)0.0041 (16)0.021 (2)0.0026 (16)
C150.0300 (19)0.0197 (16)0.032 (2)0.0039 (14)0.0051 (15)0.0014 (14)
C160.035 (2)0.033 (2)0.034 (2)0.0047 (16)0.0112 (17)0.0022 (17)
C170.049 (3)0.049 (3)0.031 (2)0.0049 (19)0.012 (2)0.0018 (18)
Geometric parameters (Å, º) top
Sn—C42.130 (3)C7—C81.375 (5)
Sn—C102.133 (3)C7—H70.9500
Sn—O12.311 (2)C8—C91.392 (5)
Sn—S12.4357 (9)C8—H80.9500
Sn—S22.5582 (9)C9—H90.9500
S1—C11.764 (3)C10—C111.396 (5)
S2—C21.718 (3)C10—C151.398 (5)
S3—C21.734 (3)C11—C121.386 (5)
S3—S42.0674 (13)C11—H110.9500
S4—C31.744 (4)C12—C131.390 (6)
S5—C31.667 (4)C12—H120.9500
S6—O11.540 (2)C13—C141.372 (6)
S6—C161.778 (4)C13—H130.9500
S6—C171.781 (4)C14—C151.395 (5)
C1—C21.379 (5)C14—H140.9500
C1—C31.423 (5)C15—H150.9500
C4—C51.388 (5)C16—H16A0.9800
C4—C91.395 (5)C16—H16B0.9800
C5—C61.396 (5)C16—H16C0.9800
C5—H50.9500C17—H17A0.9800
C6—C71.384 (5)C17—H17B0.9800
C6—H60.9500C17—H17C0.9800
C4—Sn—C10121.97 (12)C6—C7—H7120.0
C4—Sn—O186.68 (10)C7—C8—C9120.3 (3)
C10—Sn—O187.79 (10)C7—C8—H8119.8
C4—Sn—S1112.16 (9)C9—C8—H8119.8
C10—Sn—S1123.38 (9)C8—C9—C4120.2 (3)
O1—Sn—S179.58 (6)C8—C9—H9119.9
C4—Sn—S2100.73 (9)C4—C9—H9119.9
C10—Sn—S297.58 (9)C11—C10—C15118.8 (3)
O1—Sn—S2166.52 (6)C11—C10—Sn120.2 (2)
S1—Sn—S287.16 (3)C15—C10—Sn121.0 (2)
C1—S1—Sn101.66 (12)C12—C11—C10120.9 (3)
C2—S2—Sn98.03 (12)C12—C11—H11119.6
C2—S3—S494.35 (12)C10—C11—H11119.6
C3—S4—S396.65 (12)C11—C12—C13119.5 (4)
O1—S6—C16104.84 (17)C11—C12—H12120.3
O1—S6—C17104.05 (17)C13—C12—H12120.3
C16—S6—C1798.6 (2)C14—C13—C12120.5 (3)
S6—O1—Sn118.36 (12)C14—C13—H13119.7
C2—C1—C3117.9 (3)C12—C13—H13119.7
C2—C1—S1124.0 (3)C13—C14—C15120.3 (3)
C3—C1—S1118.0 (3)C13—C14—H14119.9
C1—C2—S2128.8 (3)C15—C14—H14119.9
C1—C2—S3117.3 (3)C14—C15—C10120.0 (3)
S2—C2—S3113.9 (2)C14—C15—H15120.0
C1—C3—S5128.2 (3)C10—C15—H15120.0
C1—C3—S4113.7 (3)S6—C16—H16A109.5
S5—C3—S4118.1 (2)S6—C16—H16B109.5
C5—C4—C9119.3 (3)H16A—C16—H16B109.5
C5—C4—Sn123.5 (2)S6—C16—H16C109.5
C9—C4—Sn117.2 (2)H16A—C16—H16C109.5
C4—C5—C6120.0 (3)H16B—C16—H16C109.5
C4—C5—H5120.0S6—C17—H17A109.5
C6—C5—H5120.0S6—C17—H17B109.5
C7—C6—C5120.3 (3)H17A—C17—H17B109.5
C7—C6—H6119.9S6—C17—H17C109.5
C5—C6—H6119.9H17A—C17—H17C109.5
C8—C7—C6119.9 (3)H17B—C17—H17C109.5
C8—C7—H7120.0
C4—Sn—S1—C1105.26 (14)O1—Sn—C4—C594.0 (3)
C10—Sn—S1—C192.39 (15)S1—Sn—C4—C5171.4 (3)
O1—Sn—S1—C1172.71 (12)S2—Sn—C4—C597.3 (3)
S2—Sn—S1—C14.83 (10)C10—Sn—C4—C9173.5 (2)
C4—Sn—S2—C2116.74 (14)O1—Sn—C4—C988.2 (3)
C10—Sn—S2—C2118.59 (14)S1—Sn—C4—C910.8 (3)
O1—Sn—S2—C25.7 (3)S2—Sn—C4—C980.5 (2)
S1—Sn—S2—C24.72 (11)C9—C4—C5—C61.4 (5)
C2—S3—S4—C31.58 (16)Sn—C4—C5—C6176.4 (3)
C16—S6—O1—Sn130.43 (17)C4—C5—C6—C70.3 (6)
C17—S6—O1—Sn126.56 (19)C5—C6—C7—C81.3 (6)
C4—Sn—O1—S6177.97 (16)C6—C7—C8—C90.5 (6)
C10—Sn—O1—S655.76 (16)C7—C8—C9—C41.2 (5)
S1—Sn—O1—S668.78 (13)C5—C4—C9—C82.2 (5)
S2—Sn—O1—S658.2 (3)Sn—C4—C9—C8175.8 (3)
Sn—S1—C1—C24.4 (3)C4—Sn—C10—C1142.9 (3)
Sn—S1—C1—C3176.2 (2)O1—Sn—C10—C1141.8 (3)
C3—C1—C2—S2179.4 (3)S1—Sn—C10—C11117.8 (2)
S1—C1—C2—S20.0 (5)S2—Sn—C10—C11150.6 (3)
C3—C1—C2—S30.1 (4)C4—Sn—C10—C15138.4 (3)
S1—C1—C2—S3179.45 (17)O1—Sn—C10—C15136.9 (3)
Sn—S2—C2—C14.1 (3)S1—Sn—C10—C1560.9 (3)
Sn—S2—C2—S3176.36 (15)S2—Sn—C10—C1530.7 (3)
S4—S3—C2—C11.1 (3)C15—C10—C11—C122.3 (5)
S4—S3—C2—S2179.35 (16)Sn—C10—C11—C12176.4 (3)
C2—C1—C3—S5178.8 (3)C10—C11—C12—C130.1 (6)
S1—C1—C3—S50.6 (4)C11—C12—C13—C141.8 (6)
C2—C1—C3—S41.6 (4)C12—C13—C14—C151.4 (6)
S1—C1—C3—S4179.03 (17)C13—C14—C15—C100.9 (5)
S3—S4—C3—C12.0 (2)C11—C10—C15—C142.7 (5)
S3—S4—C3—S5178.38 (18)Sn—C10—C15—C14176.0 (3)
C10—Sn—C4—C58.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···S2i0.952.713.599 (4)157
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formula[Sn(C6H5)2(C3S5)(C2H6OS)]
Mr547.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)11.1420 (5), 15.7237 (6), 11.9646 (6)
β (°) 96.892 (2)
V3)2080.97 (16)
Z4
Radiation typeMo Kα
µ (mm1)1.83
Crystal size (mm)0.24 × 0.16 × 0.10
Data collection
DiffractometerBruker–Nonius 95mm CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Tmin, Tmax0.536, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
22729, 4770, 3906
Rint0.057
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.088, 1.06
No. of reflections4770
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 1.26

Computer programs: , DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2009).

Selected bond lengths (Å) top
Sn—C42.130 (3)Sn—S12.4357 (9)
Sn—C102.133 (3)Sn—S22.5582 (9)
Sn—O12.311 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···S2i0.952.713.599 (4)157
Symmetry code: (i) x+2, y, z.
 

Footnotes

Additional correspondence author: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationAupers, J. H., Chohan, Z. H., Cox, P. J., Doidge-Harrison, S. M. S. V., Howie, R. A., Khan, A., Spencer, G. M. & Wardell, J. L. (1998). Polyhedron, 17, 4475–4486.  Web of Science CSD CrossRef CAS Google Scholar
First citationBordinhão, J., Comerlato, N. M., de Castro Cortás, L., Ferreira, G. B., Howie, R. A. & Wardell, J. L. (2008). J. Organomet. Chem. 693, 763–768.  Google Scholar
First citationBordinhão, J., Comerlato, N. M., Ferreira, G. B., Howie, R. A., da Silva, C. X. A. & Wardell, J. L. (2006). J. Organomet. Chem. 691, 1598–1605.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChohan, Z. H., Howie, R. A. & Wardell, J. L. (1999). J. Organomet. Chem. 577, 140–149.  Web of Science CSD CrossRef CAS Google Scholar
First citationComerlato, N. M., Ferreira, G. B., Howie, R. A., Silva, C. X. A. & Wardell, J. L. (2008). J. Organomet. Chem. 693, 2424–2430.  Web of Science CSD CrossRef CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationKhan, A., Low, J. N., Wardell, J. L. & Ferguson, G. (1998). Acta Cryst. C54, 1399–1401.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2007). SADABS. Version 2007/2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteimecke, G., Sieler, H.-J., Kirmse, R., Dietzch, W. & Hoyer, E. (1982). Phosphorus Sulfur, 12, 237–247.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 12| December 2009| Pages m1592-m1593
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds