organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-Bromo­pyridine-2-carboxamide

aCollege of Chemistry and Chemical Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: jushengui@163.com

(Received 4 November 2009; accepted 7 November 2009; online 21 November 2009)

In the the title compound, C6H5BrN2O, an intra­molecular N—H⋯N hydrogen bond generates an S(5) ring. In the crystal structure, inter­molecular bifurcated N—H⋯(O,O) hydrogen bonds link the mol­ecules, leading to sheets propagating in (100).

Related literature

For medicinal background to inhibitors of the crysteine protease cathepsin K, see: Altmann & Aichholz (2007[Altmann, E. & Aichholz, R. (2007). J. Med. Chem. 50, 591-594.]).

[Scheme 1]

Experimental

Crystal data
  • C6H5BrN2O

  • Mr = 201.03

  • Monoclinic, P 21 /c

  • a = 13.034 (3) Å

  • b = 6.4050 (13) Å

  • c = 8.5540 (17) Å

  • β = 94.85 (3)°

  • V = 711.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.70 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.395, Tmax = 0.599

  • 1354 measured reflections

  • 1296 independent reflections

  • 756 reflections with I > 2σ(I)

  • Rint = 0.063

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.172

  • S = 1.01

  • 1296 reflections

  • 91 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.57 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N1 0.86 2.41 2.730 (10) 102
N2—H2A⋯Oi 0.86 1.99 2.849 (9) 176
N2—H2B⋯Oii 0.86 2.22 3.002 (9) 151
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{5\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft. The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Related literature top

For medicinal background, see: Altmann et al. (2007).

Experimental top

A mixture of 30 g of 6-bromopyridine-2-carboxylic acid (0.1485 mol) in 300 ml of thionyl chloide was refluxed for twenty hours. Excess thionyl chloride was removed in vacuo. The residue was added as a slurry in dioxane or benene to 75 ml cold, stirred concentrated ammonium hydroxide. The mixture was stored overnight and the filtered to give 25 g of the title compound (yield 83.4%, m.p. 417 K). Colourless blocks of (I) were obtained by the slow evaporation of an ethyl acetate solution.

Refinement top

H atoms were positioned geometrically, with C-H = 0.93–0.97Å, and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 50% displacement ellipsoids.
[Figure 2] Fig. 2. A partial packing diagram of (I). Hydrogen bonds are shown as dashed lines.
6-Bromopyridine-2-carboxamide top
Crystal data top
C6H5BrN2OF(000) = 392
Mr = 201.03Dx = 1.877 Mg m3
Monoclinic, P21/cMelting point: 417 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 13.034 (3) ÅCell parameters from 25 reflections
b = 6.4050 (13) Åθ = 9–12°
c = 8.5540 (17) ŵ = 5.70 mm1
β = 94.85 (3)°T = 293 K
V = 711.6 (2) Å3Block, colourless
Z = 40.20 × 0.10 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
756 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.063
Graphite monochromatorθmax = 25.3°, θmin = 1.6°
ω/2θ scansh = 150
Absorption correction: ψ scan
(North et al., 1968)
k = 07
Tmin = 0.395, Tmax = 0.599l = 1010
1354 measured reflections3 standard reflections every 200 reflections
1296 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.095P)2]
where P = (Fo2 + 2Fc2)/3
1296 reflections(Δ/σ)max < 0.001
91 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C6H5BrN2OV = 711.6 (2) Å3
Mr = 201.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.034 (3) ŵ = 5.70 mm1
b = 6.4050 (13) ÅT = 293 K
c = 8.5540 (17) Å0.20 × 0.10 × 0.10 mm
β = 94.85 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
756 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.063
Tmin = 0.395, Tmax = 0.5993 standard reflections every 200 reflections
1354 measured reflections intensity decay: 1%
1296 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 1.01Δρmax = 0.45 e Å3
1296 reflectionsΔρmin = 0.57 e Å3
91 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.91125 (7)0.18241 (18)0.81361 (11)0.0756 (5)
O0.5752 (4)0.0268 (9)1.2691 (6)0.0584 (15)
N10.7461 (5)0.1078 (10)0.9836 (6)0.0440 (16)
N20.5728 (6)0.2794 (11)1.0883 (8)0.061 (2)
H2A0.52650.34911.13170.073*
H2B0.59700.32601.00450.073*
C10.8216 (6)0.0086 (14)0.9207 (8)0.049 (2)
C20.8389 (7)0.2007 (15)0.9279 (9)0.057 (2)
H2C0.89290.26150.87980.068*
C30.7743 (7)0.3160 (14)1.0077 (10)0.059 (2)
H3A0.78130.46051.01100.071*
C40.6990 (7)0.2223 (12)1.0837 (9)0.052 (2)
H4A0.65660.29991.14390.062*
C50.6875 (6)0.0119 (11)1.0690 (7)0.0408 (18)
C60.6063 (6)0.1033 (13)1.1493 (8)0.0417 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0750 (7)0.0972 (9)0.0596 (7)0.0039 (6)0.0341 (5)0.0056 (6)
O0.084 (4)0.056 (3)0.039 (3)0.012 (3)0.031 (3)0.006 (3)
N10.063 (4)0.046 (4)0.023 (3)0.000 (3)0.007 (3)0.002 (3)
N20.088 (5)0.057 (4)0.044 (4)0.014 (4)0.039 (4)0.011 (4)
C10.065 (5)0.058 (6)0.025 (4)0.012 (5)0.010 (3)0.001 (4)
C20.068 (5)0.063 (6)0.038 (5)0.015 (5)0.008 (4)0.008 (4)
C30.089 (6)0.045 (5)0.044 (5)0.006 (5)0.005 (5)0.004 (4)
C40.077 (5)0.042 (5)0.037 (4)0.002 (5)0.012 (4)0.000 (4)
C50.061 (5)0.038 (4)0.024 (4)0.005 (4)0.009 (3)0.003 (3)
C60.057 (5)0.038 (4)0.032 (4)0.007 (4)0.020 (3)0.006 (4)
Geometric parameters (Å, º) top
Br—C11.905 (8)C2—C31.349 (12)
O—C61.235 (8)C2—H2C0.9300
N1—C11.322 (9)C3—C41.362 (12)
N1—C51.342 (9)C3—H3A0.9300
N2—C61.303 (10)C4—C51.361 (10)
N2—H2A0.8600C4—H4A0.9300
N2—H2B0.8600C5—C61.503 (10)
C1—C21.360 (11)
C1—N1—C5115.1 (6)C2—C3—H3A119.8
C6—N2—H2A120.0C4—C3—H3A119.8
C6—N2—H2B120.0C5—C4—C3118.1 (8)
H2A—N2—H2B120.0C5—C4—H4A121.0
N1—C1—C2125.6 (8)C3—C4—H4A121.0
N1—C1—Br115.0 (6)N1—C5—C4123.6 (7)
C2—C1—Br119.4 (6)N1—C5—C6115.1 (6)
C3—C2—C1117.0 (8)C4—C5—C6121.4 (7)
C3—C2—H2C121.5O—C6—N2123.6 (7)
C1—C2—H2C121.5O—C6—C5118.5 (7)
C2—C3—C4120.4 (8)N2—C6—C5117.8 (6)
C5—N1—C1—C24.5 (11)C1—N1—C5—C6176.1 (6)
C5—N1—C1—Br175.2 (5)C3—C4—C5—N10.2 (12)
N1—C1—C2—C30.9 (13)C3—C4—C5—C6179.9 (7)
Br—C1—C2—C3178.7 (6)N1—C5—C6—O154.5 (7)
C1—C2—C3—C43.3 (13)C4—C5—C6—O25.5 (11)
C2—C3—C4—C53.6 (13)N1—C5—C6—N225.3 (10)
C1—N1—C5—C44.0 (10)C4—C5—C6—N2154.6 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N10.862.412.730 (10)102
N2—H2A···Oi0.861.992.849 (9)176
N2—H2B···Oii0.862.223.002 (9)151
Symmetry codes: (i) x+1, y+1/2, z+5/2; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC6H5BrN2O
Mr201.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.034 (3), 6.4050 (13), 8.5540 (17)
β (°) 94.85 (3)
V3)711.6 (2)
Z4
Radiation typeMo Kα
µ (mm1)5.70
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.395, 0.599
No. of measured, independent and
observed [I > 2σ(I)] reflections
1354, 1296, 756
Rint0.063
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.172, 1.01
No. of reflections1296
No. of parameters91
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.57

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N10.862.412.730 (10)102
N2—H2A···Oi0.861.992.849 (9)176
N2—H2B···Oii0.862.223.002 (9)151
Symmetry codes: (i) x+1, y+1/2, z+5/2; (ii) x, y+1/2, z1/2.
 

References

First citationAltmann, E. & Aichholz, R. (2007). J. Med. Chem. 50, 591–594.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft. The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds