organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Cyclo­hexyl-2-thioxo-1,3-thia­zolidin-4-one

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 1 November 2009; accepted 1 November 2009; online 7 November 2009)

In the title compound, C9H13NOS2, the complete mol­ecule is generated by crystallographic mirror symmetry, with all the non-H atoms of the rhodanine (2-thioxo-1,3-thia­zolidin-4-one) system and two C atoms of the cyclo­hexyl ring lying on the reflecting plane. The conformation is stabilized by intra­molecular C—H⋯O and C—H⋯S inter­actions. In the crystal, weak ππ inter­actions at a distance of 3.8140 (5) Å between the centroids of the heterocyclic rings occur.

Related literature

For related structures, see: Shahwar et al. (2009a[Shahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009a). Acta Cryst. E65, o2903.],b[Shahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009b). Acta Cryst. E65, o2637.],c[Shahwar, D., Tahir, M. N., Raza, M. A., Saddaf, M. & Majeed, S. (2009c). Acta Cryst. E65, o2638.],d[Shahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009d). Acta Cryst. E65, o3014.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C9H13NOS2

  • Mr = 215.32

  • Monoclinic, P 21 /m

  • a = 7.3897 (3) Å

  • b = 7.0999 (4) Å

  • c = 10.3399 (5) Å

  • β = 107.535 (2)°

  • V = 517.29 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 296 K

  • 0.36 × 0.25 × 0.23 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.849, Tmax = 0.897

  • 5969 measured reflections

  • 1390 independent reflections

  • 1194 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.096

  • S = 1.07

  • 1390 reflections

  • 76 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯S2 0.98 2.61 3.158 (2) 115
C5—H51⋯O1 0.97 2.51 3.095 (2) 119

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Our group is involved in synthesizing various rhodanine derivatives for beta-lactamase and xanthine oxidase enzyme inhibition studies. In this context, we have already reported the preparation and crystal structures of (II) (5Z)-5-(2-Hydroxybenzylidene)-3-phenyl-2-thioxo-1,3- thiazolidin-4-one (Shahwar et al., 2009a), (III) (5E)-5-(4-Hydroxy-3-methoxybenzylidene)-2-thioxo-1, 3-thiazolidin-4-one methanol monosolvate (Shahwar et al., 2009b), (IV) (5Z)-5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one methanol hemisolvate (Shahwar et al., 2009c) and (V) 3-(2-Methylphenyl)-2-thioxo-1,3-thiazolidin-4-one (Shahwar et al., 2009d). The title compound (I, Fig. 1) is in continuation of synthesizing rhodanine derivatives for biological studies.

In (I), the rhodanine group A (N1/C1/S1/C1/C3/O1/S2) and the basal plane B (C5/C6/C5i/C6i; symmetry code: i = x, - y + 1/2, z) of cyclohexyl are planar and are perpendicularly oriented. The monomeric molecules are stabilized through intramolecular H-bondings (Table 1, Fig. 1) forming a S(5) and two S(6) ring motifs (Bernstein et al., 1995). The apical C-atoms C4 and C7 of cyclohexyl are at a distance of 0.6430 (28) and -0.6667 (36) Å respectively, from the basal plane. There exist ππ interactions at a distance of 3.8140 (5) Å between the centroids of the heterocyclic rings.

Related literature top

For related structures, see: Shahwar et al. (2009a,b,c,d). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by a three step reaction procedure. In the first step cyclohexylamine (9.9 g, 0.1 mol) and triethylamine (50.5 g, 0.5 mol) were stirred in ethanol (20 ml) followed by dropwise addition of CS2 (15.2 g, 0.2 mol) while keeping the flask in an ice bath. The precipitate obtained were filtered off and washed with diethyl ether.

In second step, a solution of sodium chloroacetate (11.6 g, 0.1 mol) and chloroacetic acid (18.9 g, 0.2 mol) was prepared in 50 ml distilled water. To this solution the precipitates obtained in first step were added gradually and stirred at 273 K. This mixture was stirred untill it turned clear yellow.

In third step the yellow mixture was mixed in 140 ml hot (363–368 K) hydrochloric acid (6 N) and stirred for five minutes to obtain colorless crystalline precipitates. These precipitates were recrystalized in chloroform to get colourless prisms of (I).

Refinement top

The coordinates of H2 were refined. The other H-atoms were positioned geometrically (C–H = 0.97–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. The dotted lines represen the intramolecular H-bonds.
3-Cyclohexyl-2-thioxo-1,3-thiazolidin-4-one top
Crystal data top
C9H13NOS2F(000) = 228
Mr = 215.32Dx = 1.382 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybCell parameters from 1390 reflections
a = 7.3897 (3) Åθ = 2.9–28.4°
b = 7.0999 (4) ŵ = 0.48 mm1
c = 10.3399 (5) ÅT = 296 K
β = 107.535 (2)°Prism, colourless
V = 517.29 (4) Å30.36 × 0.25 × 0.23 mm
Z = 2
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1390 independent reflections
Radiation source: fine-focus sealed tube1194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 7.40 pixels mm-1θmax = 28.4°, θmin = 2.9°
ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 99
Tmin = 0.849, Tmax = 0.897l = 1312
5969 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0474P)2 + 0.1418P]
where P = (Fo2 + 2Fc2)/3
1390 reflections(Δ/σ)max < 0.001
76 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C9H13NOS2V = 517.29 (4) Å3
Mr = 215.32Z = 2
Monoclinic, P21/mMo Kα radiation
a = 7.3897 (3) ŵ = 0.48 mm1
b = 7.0999 (4) ÅT = 296 K
c = 10.3399 (5) Å0.36 × 0.25 × 0.23 mm
β = 107.535 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
1390 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1194 reflections with I > 2σ(I)
Tmin = 0.849, Tmax = 0.897Rint = 0.028
5969 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.43 e Å3
1390 reflectionsΔρmin = 0.23 e Å3
76 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.01379 (9)0.250000.58014 (6)0.0511 (2)
S20.41214 (8)0.250000.58341 (6)0.0543 (2)
O10.1794 (2)0.250000.19333 (18)0.0591 (6)
N10.1088 (2)0.250000.35969 (16)0.0351 (4)
C10.1866 (3)0.250000.4967 (2)0.0363 (5)
C20.1778 (3)0.250000.4253 (3)0.0477 (7)
C30.0908 (3)0.250000.3109 (2)0.0412 (6)
C40.2266 (2)0.250000.26546 (19)0.0356 (5)
C50.1971 (2)0.0715 (2)0.18098 (16)0.0450 (4)
C60.3246 (2)0.0739 (3)0.08896 (17)0.0527 (5)
C70.2925 (4)0.250000.0025 (3)0.0590 (8)
H20.255 (2)0.142 (3)0.4183 (17)0.0573*
H40.359450.250000.322010.0427*
H510.065290.062260.126270.0540*
H520.226950.037480.240220.0540*
H610.456380.068200.144080.0633*
H620.298260.036200.030700.0633*
H710.163660.250000.058350.0707*
H720.378430.250000.052300.0707*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0636 (4)0.0480 (3)0.0539 (3)0.00000.0361 (3)0.0000
S20.0461 (3)0.0671 (4)0.0438 (3)0.00000.0046 (2)0.0000
O10.0307 (7)0.0850 (13)0.0582 (10)0.00000.0084 (7)0.0000
N10.0300 (7)0.0394 (8)0.0382 (8)0.00000.0138 (6)0.0000
C10.0431 (9)0.0288 (8)0.0401 (10)0.00000.0173 (8)0.0000
C20.0417 (10)0.0390 (11)0.0722 (15)0.00000.0318 (10)0.0000
C30.0303 (8)0.0395 (10)0.0554 (12)0.00000.0153 (8)0.0000
C40.0273 (7)0.0445 (10)0.0365 (9)0.00000.0121 (7)0.0000
C50.0444 (7)0.0422 (8)0.0528 (8)0.0012 (6)0.0213 (6)0.0023 (6)
C60.0485 (8)0.0602 (10)0.0554 (9)0.0028 (7)0.0246 (7)0.0120 (8)
C70.0561 (13)0.0816 (18)0.0456 (12)0.00000.0250 (10)0.0000
Geometric parameters (Å, º) top
S1—C11.743 (2)C6—C71.514 (3)
S1—C21.789 (3)C2—H20.95 (2)
S2—C11.637 (2)C2—H2i0.95 (2)
O1—C31.195 (3)C4—H40.9800
N1—C11.359 (3)C5—H510.9700
N1—C31.408 (3)C5—H520.9700
N1—C41.489 (2)C6—H610.9700
C2—C31.507 (3)C6—H620.9700
C4—C51.5172 (18)C7—H710.9700
C4—C5i1.5172 (18)C7—H720.9700
C5—C61.528 (2)
C1—S1—C293.28 (11)C3—C2—H2i109.3 (10)
C1—N1—C3116.24 (17)H2—C2—H2i108.4 (16)
C1—N1—C4122.34 (16)N1—C4—H4107.00
C3—N1—C4121.43 (15)C5—C4—H4107.00
S1—C1—S2120.37 (12)C5i—C4—H4107.00
S1—C1—N1111.90 (16)C4—C5—H51110.00
S2—C1—N1127.73 (17)C4—C5—H52110.00
S1—C2—C3107.02 (16)C6—C5—H51110.00
O1—C3—N1124.0 (2)C6—C5—H52110.00
O1—C3—C2124.5 (2)H51—C5—H52108.00
N1—C3—C2111.56 (18)C5—C6—H61109.00
N1—C4—C5111.45 (9)C5—C6—H62109.00
N1—C4—C5i111.45 (9)C7—C6—H61109.00
C5—C4—C5i113.30 (14)C7—C6—H62109.00
C4—C5—C6109.92 (13)H61—C6—H62108.00
C5—C6—C7111.15 (17)C6—C7—H71109.00
C6—C7—C6i111.4 (2)C6—C7—H72109.00
S1—C2—H2111.4 (11)H71—C7—H72108.00
S1—C2—H2i111.4 (11)C6i—C7—H71109.00
C3—C2—H2109.3 (10)C6i—C7—H72109.00
C2—S1—C1—S2180.00 (1)C4—N1—C3—C2180.00 (1)
C2—S1—C1—N10.00 (1)C1—N1—C4—C5116.17 (11)
C1—S1—C2—C30.00 (1)C3—N1—C4—C563.83 (11)
C3—N1—C1—S10.00 (1)S1—C2—C3—O1180.00 (1)
C3—N1—C1—S2180.00 (1)S1—C2—C3—N10.00 (1)
C4—N1—C1—S1180.00 (1)N1—C4—C5—C6178.24 (13)
C4—N1—C1—S20.00 (1)C5i—C4—C5—C655.10 (17)
C1—N1—C3—O1180.00 (1)C4—C5—C6—C754.99 (19)
C1—N1—C3—C20.00 (1)C5—C6—C7—C6i56.9 (2)
C4—N1—C3—O10.00 (1)
Symmetry code: (i) x, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···S20.982.613.158 (2)115
C5—H51···O10.972.513.095 (2)119

Experimental details

Crystal data
Chemical formulaC9H13NOS2
Mr215.32
Crystal system, space groupMonoclinic, P21/m
Temperature (K)296
a, b, c (Å)7.3897 (3), 7.0999 (4), 10.3399 (5)
β (°) 107.535 (2)
V3)517.29 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.36 × 0.25 × 0.23
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.849, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
5969, 1390, 1194
Rint0.028
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.096, 1.07
No. of reflections1390
No. of parameters76
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.23

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···S20.982.613.158 (2)115
C5—H51···O10.972.513.095 (2)119
 

Acknowledgements

DS is grateful to Government College University, Lahore, for providing funds under the GCU funded Research Projects Programme.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Raza, M. A. & Iqbal, B. (2009a). Acta Cryst. E65, o2903.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009b). Acta Cryst. E65, o2637.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Raza, M. A., Saddaf, M. & Majeed, S. (2009c). Acta Cryst. E65, o2638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationShahwar, D., Tahir, M. N., Yasmeen, A., Ahmad, N. & Khan, M. A. (2009d). Acta Cryst. E65, o3014.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds