organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5-Ethenyl-1-aza­bi­cyclo­[2.2.2]octan-2-yl)(6-meth­­oxy-3-quinol­yl)methanol methanol solvate

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 27 October 2009; accepted 28 October 2009; online 31 October 2009)

In the title methanol solvate, C20H24N2O2·CH4O, an L-shaped conformation is found as the two substituents at the central hydr­oxy group are almost orthogonal to each other [the C—C—C angle at the central sp3-C atom is 110.12 (13)°]. The most notable feature of the crystal packing is the formation of supra­molecular chains along the b direction mediated by O—H⋯N hydrogen bonds occurring between the hydr­oxy and quinoline N atoms; the methanol mol­ecules are linked to these chains via O—H⋯Namine hydrogen bonds. C—H⋯O inter­actions also occur.

Related literature

For background to pre-catalyst mol­ecules for the Michael addition of acetone to trans-β-nitro­styrene, see: Mandal & Zhao (2008[Mandal, T. & Zhao, C.-G. (2008). Angew. Chem. Int. Ed. 47, 7714-7717.]).

[Scheme 1]

Experimental

Crystal data
  • C20H24N2O2·CH4O

  • Mr = 356.45

  • Orthorhombic, P 21 21 21

  • a = 9.5374 (13) Å

  • b = 12.9842 (17) Å

  • c = 15.871 (2) Å

  • V = 1965.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 98 K

  • 0.12 × 0.10 × 0.04 mm

Data collection
  • Rigaku AFC12K/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.788, Tmax = 1.000

  • 14410 measured reflections

  • 2561 independent reflections

  • 2501 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.108

  • S = 1.08

  • 2561 reflections

  • 243 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3o⋯N1 0.84 1.95 2.783 (2) 171
O1—H1o⋯N2i 0.84 1.92 2.751 (2) 173
C20—H20b⋯O1ii 0.98 2.33 3.298 (2) 171
C18—H18⋯O3iii 0.95 2.58 3.471 (2) 155
Symmetry codes: (i) [-x, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x+1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Molecules related to and including the title compound, (I), have been evaluated as pre-catalysts for the Michael addition of acetone to trans-β-nitrostyrene, see: Mandal & Zhao (2008).

The molecule of (I), Fig. 1, adopts an `L'-shaped conformation whereby the substituted quinoline and dabco residues are linked at the central sp3-C10 atom carrying the hydroxy group, the C1–C10–C11 angle is 110.12 (13)°. Viewed down the N1···C3 axis, the dabco molecule adopts an essentially eclipsed conformation. Both the hydroxy and vinyl groups are orientated towards the same side of the molecule.

In the crystal structure, molecules are connected into a supramolecular chain along the b axis via O—H···N2 hydrogen bonds formed between the O1-hydroxy group and the N2 atom of the quinoline residue, Table 1 and Fig. 2. The lattice methanol molecules associate with this chain via O—H···N1 hydrogen bonds. Chains are consolidated in the crystal packing by C–H···O interactions, Table 1.

Related literature top

For background to pre-catalyst molecules for the Michael addition of acetone to trans-β-nitrostyrene, see: Mandal & Zhao (2008).

Experimental top

Quinidine (TCI America Chemicals) and `L'-proline (Sigma Aldrich) were obtained commercially and used as received. A 1:1 molar ratio of quinidine (100 mg) and `L'-proline (35 mg) were taken in methanol (8 ml) and upon upon vapour diffusion of hexane, colourless crystals formed within 7 days.

Refinement top

The H atoms were geometrically placed (O—H = 0.84 Å and C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(O, methyl-C). In the absence of significant anomalous scattering effects, 1951 Friedel pairs were averaged in the final refinement.

Structure description top

Molecules related to and including the title compound, (I), have been evaluated as pre-catalysts for the Michael addition of acetone to trans-β-nitrostyrene, see: Mandal & Zhao (2008).

The molecule of (I), Fig. 1, adopts an `L'-shaped conformation whereby the substituted quinoline and dabco residues are linked at the central sp3-C10 atom carrying the hydroxy group, the C1–C10–C11 angle is 110.12 (13)°. Viewed down the N1···C3 axis, the dabco molecule adopts an essentially eclipsed conformation. Both the hydroxy and vinyl groups are orientated towards the same side of the molecule.

In the crystal structure, molecules are connected into a supramolecular chain along the b axis via O—H···N2 hydrogen bonds formed between the O1-hydroxy group and the N2 atom of the quinoline residue, Table 1 and Fig. 2. The lattice methanol molecules associate with this chain via O—H···N1 hydrogen bonds. Chains are consolidated in the crystal packing by C–H···O interactions, Table 1.

For background to pre-catalyst molecules for the Michael addition of acetone to trans-β-nitrostyrene, see: Mandal & Zhao (2008).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the asymmetric unit in (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. The O—H···N hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. Supramolecular chain in (I) mediated by O–H···N hydrogen bonds (orange dashed lines). Methanol molecules are associated with this chain via O–H···N hydrogen bonds (black dashed lines).
(5-Ethenyl-1-azabicyclo[2.2.2]octan-2-yl)(6-methoxy-3-quinolyl)methanol methanol solvate top
Crystal data top
C20H24N2O2·CH4OF(000) = 768
Mr = 356.45Dx = 1.205 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7299 reflections
a = 9.5374 (13) Åθ = 2.0–40.2°
b = 12.9842 (17) ŵ = 0.08 mm1
c = 15.871 (2) ÅT = 98 K
V = 1965.4 (4) Å3Platelet, colourless
Z = 40.12 × 0.10 × 0.04 mm
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
2561 independent reflections
Radiation source: fine-focus sealed tube2501 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.788, Tmax = 1.000k = 1616
14410 measured reflectionsl = 1820
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.067P)2 + 0.3164P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
2561 reflectionsΔρmax = 0.35 e Å3
243 parametersΔρmin = 0.27 e Å3
2 restraintsAbsolute structure: nd
Primary atom site location: structure-invariant direct methods
Crystal data top
C20H24N2O2·CH4OV = 1965.4 (4) Å3
Mr = 356.45Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.5374 (13) ŵ = 0.08 mm1
b = 12.9842 (17) ÅT = 98 K
c = 15.871 (2) Å0.12 × 0.10 × 0.04 mm
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
2561 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2501 reflections with I > 2σ(I)
Tmin = 0.788, Tmax = 1.000Rint = 0.043
14410 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0392 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.08Δρmax = 0.35 e Å3
2561 reflectionsΔρmin = 0.27 e Å3
243 parametersAbsolute structure: nd
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.09211 (13)0.48893 (9)0.86000 (8)0.0208 (3)
H1O0.08590.55280.85260.031*
O20.56486 (13)0.36533 (10)0.77309 (8)0.0235 (3)
O30.32503 (17)0.60866 (12)0.92437 (9)0.0349 (4)
H3O0.26070.57120.94350.052*
N10.12984 (17)0.48168 (12)1.00313 (9)0.0245 (3)
N20.05966 (17)0.19494 (12)0.67553 (10)0.0228 (3)
C10.08927 (18)0.39987 (13)0.94193 (10)0.0191 (3)
H10.17540.35800.93120.023*
C20.0200 (2)0.32607 (14)0.98034 (12)0.0250 (4)
H2A0.11350.33930.95560.030*
H2B0.00610.25370.96840.030*
C30.0236 (2)0.34482 (17)1.07595 (13)0.0299 (4)
H30.08270.29131.10410.036*
C40.1270 (2)0.33999 (17)1.10976 (13)0.0324 (5)
H4A0.17110.27381.09360.039*
H4B0.12660.34491.17200.039*
C50.2101 (2)0.43074 (17)1.07174 (13)0.0304 (4)
H5A0.23100.48161.11650.036*
H5B0.30040.40511.04910.036*
C60.0053 (2)0.53057 (16)1.04185 (12)0.0327 (5)
H6A0.05390.56070.99700.039*
H6B0.03620.58721.07920.039*
C70.0833 (2)0.45269 (18)1.09371 (12)0.0329 (5)
H70.06940.46811.15490.039*
C80.2379 (3)0.4605 (2)1.07452 (16)0.0498 (7)
H80.26500.46261.01700.060*
C90.3375 (3)0.4646 (2)1.13121 (18)0.0534 (7)
H9A0.31450.46261.18940.064*
H9B0.43270.46951.11410.064*
C100.04468 (16)0.44563 (13)0.85620 (11)0.0175 (3)
H100.11260.50100.84020.021*
C110.04985 (18)0.36143 (13)0.78993 (10)0.0182 (3)
C120.07008 (19)0.31535 (14)0.76062 (12)0.0227 (4)
H120.15930.33920.77870.027*
C130.06039 (19)0.23226 (15)0.70350 (12)0.0249 (4)
H130.14490.20150.68420.030*
C140.18062 (18)0.24173 (13)0.70160 (10)0.0196 (3)
C150.18147 (17)0.32619 (13)0.75884 (10)0.0172 (3)
C160.31191 (18)0.37064 (13)0.78240 (10)0.0180 (3)
H160.31370.42830.81930.022*
C170.43522 (18)0.33065 (13)0.75211 (11)0.0191 (3)
C180.43402 (19)0.24588 (14)0.69502 (11)0.0213 (3)
H180.51990.21870.67430.026*
C190.31040 (19)0.20397 (14)0.67016 (11)0.0216 (3)
H190.31060.14850.63110.026*
C200.57014 (19)0.44156 (15)0.83814 (14)0.0288 (4)
H20A0.52190.50400.81910.043*
H20B0.66820.45790.85100.043*
H20C0.52400.41500.88880.043*
C210.3789 (4)0.6699 (3)0.98995 (18)0.0793 (13)
H21A0.31870.73030.99790.119*
H21B0.47400.69250.97550.119*
H21C0.38160.62961.04210.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0171 (6)0.0161 (5)0.0292 (6)0.0017 (5)0.0012 (5)0.0008 (5)
O20.0157 (5)0.0233 (6)0.0314 (6)0.0006 (5)0.0013 (5)0.0028 (5)
O30.0421 (9)0.0361 (8)0.0265 (6)0.0121 (7)0.0075 (6)0.0059 (6)
N10.0303 (8)0.0229 (7)0.0203 (6)0.0048 (6)0.0025 (6)0.0006 (6)
N20.0230 (7)0.0193 (7)0.0262 (7)0.0012 (6)0.0012 (6)0.0032 (6)
C10.0206 (8)0.0166 (7)0.0202 (7)0.0011 (6)0.0009 (6)0.0007 (6)
C20.0281 (9)0.0209 (8)0.0259 (8)0.0048 (7)0.0028 (7)0.0031 (7)
C30.0292 (9)0.0362 (11)0.0242 (8)0.0031 (8)0.0029 (8)0.0098 (8)
C40.0322 (10)0.0360 (11)0.0291 (9)0.0001 (9)0.0013 (8)0.0110 (8)
C50.0320 (10)0.0346 (10)0.0244 (8)0.0049 (8)0.0060 (8)0.0027 (8)
C60.0487 (12)0.0262 (10)0.0234 (8)0.0091 (9)0.0014 (9)0.0047 (8)
C70.0318 (10)0.0468 (12)0.0201 (8)0.0083 (10)0.0039 (8)0.0020 (8)
C80.0360 (12)0.080 (2)0.0335 (11)0.0157 (13)0.0006 (10)0.0086 (13)
C90.0388 (12)0.0715 (19)0.0500 (14)0.0109 (13)0.0095 (11)0.0000 (14)
C100.0151 (7)0.0161 (7)0.0212 (7)0.0002 (6)0.0008 (6)0.0003 (6)
C110.0189 (7)0.0155 (7)0.0201 (7)0.0002 (6)0.0010 (6)0.0012 (6)
C120.0178 (7)0.0216 (8)0.0288 (8)0.0019 (7)0.0005 (7)0.0039 (7)
C130.0208 (8)0.0230 (8)0.0311 (9)0.0020 (7)0.0030 (7)0.0047 (7)
C140.0218 (8)0.0175 (8)0.0195 (7)0.0009 (7)0.0005 (6)0.0014 (6)
C150.0181 (7)0.0151 (7)0.0184 (7)0.0002 (6)0.0003 (6)0.0009 (6)
C160.0190 (7)0.0163 (7)0.0186 (7)0.0009 (6)0.0003 (6)0.0007 (6)
C170.0186 (7)0.0180 (8)0.0207 (7)0.0003 (6)0.0004 (6)0.0033 (6)
C180.0210 (7)0.0211 (8)0.0217 (8)0.0039 (7)0.0046 (7)0.0008 (7)
C190.0252 (8)0.0183 (8)0.0212 (7)0.0025 (7)0.0019 (7)0.0023 (6)
C200.0171 (7)0.0270 (9)0.0422 (10)0.0017 (7)0.0009 (8)0.0092 (8)
C210.106 (3)0.092 (3)0.0397 (14)0.069 (2)0.0241 (16)0.0203 (15)
Geometric parameters (Å, º) top
O1—C101.4218 (19)C7—C81.509 (3)
O1—H1O0.8400C7—H71.0000
O2—C171.357 (2)C8—C91.309 (4)
O2—C201.431 (2)C8—H80.9500
O3—C211.407 (3)C9—H9A0.9500
O3—H3O0.8401C9—H9B0.9500
N1—C61.480 (3)C10—C111.518 (2)
N1—C51.487 (2)C10—H101.0000
N1—C11.490 (2)C11—C121.372 (2)
N2—C131.320 (2)C11—C151.424 (2)
N2—C141.368 (2)C12—C131.412 (2)
C1—C21.541 (2)C12—H120.9500
C1—C101.544 (2)C13—H130.9500
C1—H11.0000C14—C191.422 (2)
C2—C31.537 (3)C14—C151.424 (2)
C2—H2A0.9900C15—C161.421 (2)
C2—H2B0.9900C16—C171.373 (2)
C3—C41.534 (3)C16—H160.9500
C3—C71.538 (3)C17—C181.426 (2)
C3—H31.0000C18—C191.357 (3)
C4—C51.543 (3)C18—H180.9500
C4—H4A0.9900C19—H190.9500
C4—H4B0.9900C20—H20A0.9800
C5—H5A0.9900C20—H20B0.9800
C5—H5B0.9900C20—H20C0.9800
C6—C71.553 (3)C21—H21A0.9800
C6—H6A0.9900C21—H21B0.9800
C6—H6B0.9900C21—H21C0.9800
C10—O1—H1O108.6C9—C8—H8117.5
C17—O2—C20116.01 (13)C7—C8—H8117.5
C21—O3—H3O109.2C8—C9—H9A120.0
C6—N1—C5107.46 (15)C8—C9—H9B120.0
C6—N1—C1111.58 (15)H9A—C9—H9B120.0
C5—N1—C1107.09 (15)O1—C10—C11110.12 (13)
C13—N2—C14117.82 (15)O1—C10—C1111.56 (13)
N1—C1—C2111.16 (14)C11—C10—C1108.93 (14)
N1—C1—C10111.80 (14)O1—C10—H10108.7
C2—C1—C10113.66 (14)C11—C10—H10108.7
N1—C1—H1106.6C1—C10—H10108.7
C2—C1—H1106.6C12—C11—C15118.50 (15)
C10—C1—H1106.6C12—C11—C10121.46 (15)
C3—C2—C1107.88 (15)C15—C11—C10120.01 (14)
C3—C2—H2A110.1C11—C12—C13119.75 (16)
C1—C2—H2A110.1C11—C12—H12120.1
C3—C2—H2B110.1C13—C12—H12120.1
C1—C2—H2B110.1N2—C13—C12123.58 (17)
H2A—C2—H2B108.4N2—C13—H13118.2
C4—C3—C2108.53 (17)C12—C13—H13118.2
C4—C3—C7108.63 (18)N2—C14—C19118.35 (15)
C2—C3—C7109.48 (16)N2—C14—C15122.68 (15)
C4—C3—H3110.1C19—C14—C15118.98 (15)
C2—C3—H3110.1C16—C15—C14119.04 (15)
C7—C3—H3110.1C16—C15—C11123.35 (15)
C3—C4—C5108.25 (16)C14—C15—C11117.60 (15)
C3—C4—H4A110.0C17—C16—C15120.28 (15)
C5—C4—H4A110.0C17—C16—H16119.9
C3—C4—H4B110.0C15—C16—H16119.9
C5—C4—H4B110.0O2—C17—C16124.69 (16)
H4A—C4—H4B108.4O2—C17—C18114.79 (15)
N1—C5—C4111.18 (16)C16—C17—C18120.52 (16)
N1—C5—H5A109.4C19—C18—C17120.08 (16)
C4—C5—H5A109.4C19—C18—H18120.0
N1—C5—H5B109.4C17—C18—H18120.0
C4—C5—H5B109.4C18—C19—C14121.07 (16)
H5A—C5—H5B108.0C18—C19—H19119.5
N1—C6—C7112.16 (16)C14—C19—H19119.5
N1—C6—H6A109.2O2—C20—H20A109.5
C7—C6—H6A109.2O2—C20—H20B109.5
N1—C6—H6B109.2H20A—C20—H20B109.5
C7—C6—H6B109.2O2—C20—H20C109.5
H6A—C6—H6B107.9H20A—C20—H20C109.5
C8—C7—C3112.7 (2)H20B—C20—H20C109.5
C8—C7—C6112.37 (19)O3—C21—H21A109.5
C3—C7—C6107.13 (15)O3—C21—H21B109.5
C8—C7—H7108.2H21A—C21—H21B109.5
C3—C7—H7108.2O3—C21—H21C109.5
C6—C7—H7108.2H21A—C21—H21C109.5
C9—C8—C7124.9 (2)H21B—C21—H21C109.5
C6—N1—C1—C248.65 (19)C1—C10—C11—C12103.71 (18)
C5—N1—C1—C268.68 (19)O1—C10—C11—C15163.18 (14)
C6—N1—C1—C1079.54 (17)C1—C10—C11—C1574.18 (19)
C5—N1—C1—C10163.12 (14)C15—C11—C12—C132.5 (3)
N1—C1—C2—C314.0 (2)C10—C11—C12—C13175.43 (16)
C10—C1—C2—C3141.20 (16)C14—N2—C13—C122.0 (3)
C1—C2—C3—C451.1 (2)C11—C12—C13—N20.1 (3)
C1—C2—C3—C767.3 (2)C13—N2—C14—C19178.37 (17)
C2—C3—C4—C565.3 (2)C13—N2—C14—C151.8 (3)
C7—C3—C4—C553.6 (2)N2—C14—C15—C16179.73 (16)
C6—N1—C5—C466.4 (2)C19—C14—C15—C160.4 (2)
C1—N1—C5—C453.6 (2)N2—C14—C15—C110.6 (2)
C3—C4—C5—N110.8 (2)C19—C14—C15—C11179.29 (15)
C5—N1—C6—C754.7 (2)C12—C11—C15—C16177.65 (17)
C1—N1—C6—C762.44 (19)C10—C11—C15—C164.4 (2)
C4—C3—C7—C8171.49 (17)C12—C11—C15—C142.7 (2)
C2—C3—C7—C870.1 (2)C10—C11—C15—C14175.28 (15)
C4—C3—C7—C664.42 (19)C14—C15—C16—C171.8 (2)
C2—C3—C7—C653.9 (2)C11—C15—C16—C17177.88 (16)
N1—C6—C7—C8133.14 (19)C20—O2—C17—C166.9 (2)
N1—C6—C7—C38.8 (2)C20—O2—C17—C18172.46 (15)
C3—C7—C8—C9106.1 (3)C15—C16—C17—O2177.66 (16)
C6—C7—C8—C9132.7 (3)C15—C16—C17—C181.6 (2)
N1—C1—C10—O176.08 (17)O2—C17—C18—C19179.34 (16)
C2—C1—C10—O150.77 (19)C16—C17—C18—C190.0 (3)
N1—C1—C10—C11162.15 (14)C17—C18—C19—C141.4 (3)
C2—C1—C10—C1171.00 (17)N2—C14—C19—C18178.68 (17)
O1—C10—C11—C1218.9 (2)C15—C14—C19—C181.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···N10.841.952.783 (2)171
O1—H1o···N2i0.841.922.751 (2)173
C20—H20b···O1ii0.982.333.298 (2)171
C18—H18···O3iii0.952.583.471 (2)155
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y, z; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H24N2O2·CH4O
Mr356.45
Crystal system, space groupOrthorhombic, P212121
Temperature (K)98
a, b, c (Å)9.5374 (13), 12.9842 (17), 15.871 (2)
V3)1965.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.12 × 0.10 × 0.04
Data collection
DiffractometerRigaku AFC12K/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.788, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14410, 2561, 2501
Rint0.043
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.108, 1.08
No. of reflections2561
No. of parameters243
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.27
Absolute structureNd

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3o···N10.841.952.783 (2)171
O1—H1o···N2i0.841.922.751 (2)173
C20—H20b···O1ii0.982.333.298 (2)171
C18—H18···O3iii0.952.583.471 (2)155
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y, z; (iii) x+1, y1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: cong.zhao@utsa.edu.

Acknowledgements

CGZ thanks the National Science Foundation (grant No. CHE-0909954) for financial support of this project.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMandal, T. & Zhao, C.-G. (2008). Angew. Chem. Int. Ed. 47, 7714–7717.  Web of Science CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds