organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Methyl­anilino)-N′-(propan-2-yl­­idene)acetohydrazide

aInstitute of Chemistry, University of the Punjab, Lahore, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, Gomal University, Dera Ismail Khan, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 25 October 2009; accepted 25 October 2009; online 31 October 2009)

The conformation of the title compound, C12H17N3O, is consolidated by an intra­molecular N—H⋯O hydrogen bond, generating an S(5) ring. In the crystal, inversion dimers linked by pairs of N—H⋯O inter­actions occur, resulting in R22(8) ring motifs.

Related literature

For related structures, see: Salim et al. (2009[Salim, M., Mahmood, Z., Tahir, M. N., Ahmad, S. & Yaseen, M. (2009). Acta Cryst. E65, o2595.]); Shi et al. (2007[Shi, Z.-Q., Ji, N.-N., Zheng, Z.-B. & Li, J.-K. (2007). Acta Cryst. E63, o4561.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C12H17N3O

  • Mr = 219.29

  • Monoclinic, P 21 /n

  • a = 13.2194 (9) Å

  • b = 4.3865 (3) Å

  • c = 21.7413 (13) Å

  • β = 103.433 (3)°

  • V = 1226.22 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.28 × 0.25 × 0.22 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.984

  • 13485 measured reflections

  • 2998 independent reflections

  • 1608 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.166

  • S = 1.00

  • 2998 reflections

  • 148 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.81 (3) 2.21 (3) 2.604 (2) 110 (2)
N2—H2⋯O1i 0.88 (2) 2.06 (2) 2.920 (2) 166 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Literature has shown that hydrazides as well as their derivatives are characterized by low toxicity and possess a broad spectrum of pharmaceutical activities. The title compound (I, Fig. 1) is one of the several hydrazide derivatives prepared with substitution and alteration of the basic moiety as a key to obtain good potency. In this context we have already reported the crystal structure of 2-(3,4-Dimethylanilino)acetohydrazide (Salim et al., 2009).

The crystal structure of (II) 2-(1H-Benzotriazol-1-yl)-N'-(propan-2-ylidene)acetohydrazide (Shi et al., 2007) has been published which contains the side chain of (I).

In (I) the 2-methylanilinic group A (C1—C6/N1/C12) and the side chain group B (C7/C8/N2/N3/C9—C11/O1) are planar with maximum r. m. s. deviations of 0.0064 and 0.0146 Å respectively, from the respective mean square planes. The dihedral angle between A/B is 4.70 (10)°. In (I), there exists intramolecular H-bonding of N—H···O type (Table 1, Fig. 1) completing S(5) ring motif (Bernstein et al., 1995). The molecules are dimerized due to intermolecular H-bonding of N—H···O type (Table 1, Fig. 2) completing R22(8) ring motif. There does not exist any C–H···π or π···π interactions.

Related literature top

For related structures, see: Salim et al. (2009); Shi et al. (2007). For graph-set theory, see: Bernstein et al. (1995).

Experimental top

2-[(2-Methylphenyl)amino]acetohydrazide (0.9 g, 5 mmol) and acetone (0.29 g, 5 mmol) were refluxed along with stirring in 100 ml of ethylalcohol for 30 minutes and after evaporation of the solvent, the crude product obtained was recrystallized in methylalcohol to obtain colorless prisms of (I).

Refinement top

The coordinates of H1, H2, H7A and H7B were refined. The other H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Structure description top

Literature has shown that hydrazides as well as their derivatives are characterized by low toxicity and possess a broad spectrum of pharmaceutical activities. The title compound (I, Fig. 1) is one of the several hydrazide derivatives prepared with substitution and alteration of the basic moiety as a key to obtain good potency. In this context we have already reported the crystal structure of 2-(3,4-Dimethylanilino)acetohydrazide (Salim et al., 2009).

The crystal structure of (II) 2-(1H-Benzotriazol-1-yl)-N'-(propan-2-ylidene)acetohydrazide (Shi et al., 2007) has been published which contains the side chain of (I).

In (I) the 2-methylanilinic group A (C1—C6/N1/C12) and the side chain group B (C7/C8/N2/N3/C9—C11/O1) are planar with maximum r. m. s. deviations of 0.0064 and 0.0146 Å respectively, from the respective mean square planes. The dihedral angle between A/B is 4.70 (10)°. In (I), there exists intramolecular H-bonding of N—H···O type (Table 1, Fig. 1) completing S(5) ring motif (Bernstein et al., 1995). The molecules are dimerized due to intermolecular H-bonding of N—H···O type (Table 1, Fig. 2) completing R22(8) ring motif. There does not exist any C–H···π or π···π interactions.

For related structures, see: Salim et al. (2009); Shi et al. (2007). For graph-set theory, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 50% probability level. The dotted line represent the intramolecular H-bond.
[Figure 2] Fig. 2. The partial packing of (I), which shows that molecules form inversion dimers due to H-bondings.
-(2-Methylanilino)-N'-(propan-2-ylidene)acetohydrazide top
Crystal data top
C12H17N3OF(000) = 472
Mr = 219.29Dx = 1.188 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2998 reflections
a = 13.2194 (9) Åθ = 3.0–28.2°
b = 4.3865 (3) ŵ = 0.08 mm1
c = 21.7413 (13) ÅT = 296 K
β = 103.433 (3)°Prism, colourless
V = 1226.22 (14) Å30.28 × 0.25 × 0.22 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2998 independent reflections
Radiation source: fine-focus sealed tube1608 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 7.40 pixels mm-1θmax = 28.2°, θmin = 3.0°
ω scansh = 1717
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 55
Tmin = 0.979, Tmax = 0.984l = 2828
13485 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.067P)2 + 0.3661P]
where P = (Fo2 + 2Fc2)/3
2998 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C12H17N3OV = 1226.22 (14) Å3
Mr = 219.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.2194 (9) ŵ = 0.08 mm1
b = 4.3865 (3) ÅT = 296 K
c = 21.7413 (13) Å0.28 × 0.25 × 0.22 mm
β = 103.433 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2998 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1608 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.984Rint = 0.040
13485 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.18 e Å3
2998 reflectionsΔρmin = 0.16 e Å3
148 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.47742 (12)0.3771 (4)0.42354 (7)0.0780 (6)
N10.53042 (16)0.2794 (5)0.31712 (8)0.0739 (7)
N20.61215 (13)0.6771 (4)0.46619 (8)0.0572 (6)
N30.70384 (12)0.8122 (4)0.46023 (7)0.0550 (5)
C10.54130 (15)0.2216 (5)0.25657 (8)0.0537 (6)
C20.46554 (16)0.0463 (5)0.21591 (9)0.0597 (7)
C30.47980 (19)0.0121 (6)0.15595 (10)0.0751 (9)
C40.5629 (2)0.0969 (6)0.13542 (10)0.0768 (9)
C50.63565 (18)0.2686 (6)0.17511 (10)0.0704 (8)
C60.62626 (15)0.3307 (5)0.23575 (9)0.0622 (7)
C70.59948 (16)0.4699 (5)0.36058 (9)0.0551 (7)
C80.55802 (15)0.5040 (5)0.41921 (8)0.0536 (6)
C90.75244 (15)0.9750 (4)0.50608 (9)0.0524 (6)
C100.71970 (17)1.0357 (6)0.56608 (9)0.0674 (8)
C110.85192 (17)1.1136 (6)0.49869 (11)0.0728 (8)
C120.3731 (2)0.0733 (7)0.23729 (13)0.0865 (10)
H10.478 (2)0.222 (6)0.3270 (12)0.0887*
H20.5864 (16)0.694 (5)0.4998 (11)0.0686*
H30.430770.130400.128530.0902*
H40.569800.054170.094690.0922*
H50.692160.344760.161260.0845*
H60.676880.445810.262750.0747*
H7A0.6053 (16)0.673 (5)0.3444 (10)0.0661*
H7B0.6679 (17)0.383 (5)0.3735 (10)0.0661*
H10A0.653041.134190.556700.1011*
H10B0.769931.165360.592730.1011*
H10C0.715070.846430.587440.1011*
H11A0.864721.054500.458670.1092*
H11B0.907971.043830.532160.1092*
H11C0.847111.331640.500500.1092*
H12A0.396240.201030.273690.1299*
H12B0.330070.189750.203830.1299*
H12C0.333830.094410.248030.1299*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0743 (10)0.1126 (13)0.0574 (9)0.0338 (9)0.0366 (7)0.0246 (8)
N10.0746 (12)0.1060 (16)0.0500 (10)0.0339 (11)0.0325 (9)0.0234 (10)
N20.0590 (10)0.0746 (12)0.0433 (9)0.0111 (8)0.0229 (7)0.0086 (8)
N30.0568 (9)0.0646 (10)0.0474 (9)0.0067 (8)0.0196 (7)0.0032 (8)
C10.0570 (11)0.0650 (12)0.0420 (10)0.0042 (9)0.0173 (8)0.0040 (9)
C20.0613 (12)0.0670 (13)0.0512 (11)0.0067 (10)0.0141 (9)0.0076 (10)
C30.0838 (16)0.0852 (17)0.0534 (12)0.0070 (13)0.0099 (11)0.0179 (12)
C40.0926 (17)0.0973 (18)0.0456 (11)0.0234 (15)0.0262 (12)0.0069 (12)
C50.0678 (13)0.0986 (18)0.0523 (12)0.0206 (13)0.0291 (11)0.0085 (12)
C60.0561 (11)0.0851 (15)0.0489 (11)0.0012 (10)0.0192 (9)0.0021 (10)
C70.0580 (11)0.0679 (14)0.0431 (10)0.0073 (10)0.0195 (9)0.0039 (10)
C80.0571 (11)0.0649 (12)0.0426 (10)0.0054 (10)0.0192 (8)0.0049 (9)
C90.0565 (10)0.0556 (11)0.0467 (10)0.0007 (9)0.0152 (8)0.0010 (9)
C100.0738 (14)0.0787 (15)0.0522 (12)0.0106 (12)0.0198 (10)0.0122 (11)
C110.0697 (13)0.0839 (16)0.0685 (14)0.0171 (12)0.0234 (11)0.0067 (12)
C120.0758 (15)0.102 (2)0.0831 (17)0.0268 (14)0.0212 (13)0.0220 (15)
Geometric parameters (Å, º) top
O1—C81.225 (3)C9—C101.491 (3)
N1—C11.381 (2)C3—H30.9300
N1—C71.423 (3)C4—H40.9300
N2—N31.382 (2)C5—H50.9300
N2—C81.339 (3)C6—H60.9300
N3—C91.272 (2)C7—H7A0.97 (2)
N1—H10.81 (3)C7—H7B0.96 (2)
N2—H20.88 (2)C10—H10A0.9600
C1—C21.402 (3)C10—H10B0.9600
C1—C61.390 (3)C10—H10C0.9600
C2—C31.384 (3)C11—H11A0.9600
C2—C121.500 (4)C11—H11B0.9600
C3—C41.365 (4)C11—H11C0.9600
C4—C51.361 (3)C12—H12A0.9600
C5—C61.380 (3)C12—H12B0.9600
C7—C81.507 (3)C12—H12C0.9600
C9—C111.491 (3)
C1—N1—C7123.25 (19)C4—C5—H5120.00
N3—N2—C8119.78 (16)C6—C5—H5120.00
N2—N3—C9117.48 (16)C1—C6—H6120.00
C7—N1—H1117.5 (18)C5—C6—H6120.00
C1—N1—H1118.7 (18)N1—C7—H7A113.1 (13)
N3—N2—H2124.1 (15)N1—C7—H7B112.1 (13)
C8—N2—H2116.2 (15)C8—C7—H7A106.9 (13)
N1—C1—C2118.99 (19)C8—C7—H7B107.1 (13)
N1—C1—C6121.23 (19)H7A—C7—H7B108.8 (19)
C2—C1—C6119.78 (17)C9—C10—H10A109.00
C3—C2—C12121.8 (2)C9—C10—H10B109.00
C1—C2—C3117.5 (2)C9—C10—H10C109.00
C1—C2—C12120.72 (19)H10A—C10—H10B109.00
C2—C3—C4122.7 (2)H10A—C10—H10C109.00
C3—C4—C5119.4 (2)H10B—C10—H10C109.00
C4—C5—C6120.5 (2)C9—C11—H11A109.00
C1—C6—C5120.14 (19)C9—C11—H11B109.00
N1—C7—C8108.46 (18)C9—C11—H11C109.00
O1—C8—N2121.29 (17)H11A—C11—H11B109.00
O1—C8—C7120.90 (18)H11A—C11—H11C109.00
N2—C8—C7117.81 (18)H11B—C11—H11C109.00
N3—C9—C11116.23 (18)C2—C12—H12A109.00
C10—C9—C11117.65 (18)C2—C12—H12B109.00
N3—C9—C10126.12 (19)C2—C12—H12C109.00
C2—C3—H3119.00H12A—C12—H12B109.00
C4—C3—H3119.00H12A—C12—H12C109.00
C3—C4—H4120.00H12B—C12—H12C109.00
C5—C4—H4120.00
C7—N1—C1—C2176.0 (2)C6—C1—C2—C12179.9 (2)
C7—N1—C1—C64.8 (3)N1—C1—C6—C5179.7 (2)
C1—N1—C7—C8174.7 (2)C2—C1—C6—C50.5 (3)
C8—N2—N3—C9179.89 (19)C1—C2—C3—C40.9 (4)
N3—N2—C8—O1178.75 (19)C12—C2—C3—C4179.4 (2)
N3—N2—C8—C71.3 (3)C2—C3—C4—C50.4 (4)
N2—N3—C9—C100.2 (3)C3—C4—C5—C60.5 (4)
N2—N3—C9—C11179.05 (18)C4—C5—C6—C10.9 (4)
N1—C1—C2—C3178.8 (2)N1—C7—C8—O10.2 (3)
N1—C1—C2—C120.9 (3)N1—C7—C8—N2179.80 (19)
C6—C1—C2—C30.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.81 (3)2.21 (3)2.604 (2)110 (2)
N2—H2···O1i0.88 (2)2.06 (2)2.920 (2)166 (2)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC12H17N3O
Mr219.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)13.2194 (9), 4.3865 (3), 21.7413 (13)
β (°) 103.433 (3)
V3)1226.22 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.28 × 0.25 × 0.22
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.979, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
13485, 2998, 1608
Rint0.040
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.166, 1.00
No. of reflections2998
No. of parameters148
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.16

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10.81 (3)2.21 (3)2.604 (2)110 (2)
N2—H2···O1i0.88 (2)2.06 (2)2.920 (2)166 (2)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

MS gratefully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing a Scholarship under the Indigenous PhD Program (PIN Code: 042–121068-PS2–109).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSalim, M., Mahmood, Z., Tahir, M. N., Ahmad, S. & Yaseen, M. (2009). Acta Cryst. E65, o2595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Z.-Q., Ji, N.-N., Zheng, Z.-B. & Li, J.-K. (2007). Acta Cryst. E63, o4561.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds