organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(4,6-Di­methyl­pyrimidin-2-yl)-4-(oxolan-2-ylamino)benzene­sulfonamide

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cSchool of Biomolecular and Physical Sciences, Nathan, Griffith University, Queensland 4111, Australia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 20 October 2009; accepted 21 October 2009; online 28 October 2009)

The title compound, C16H20N4O3S, adopts an L-shaped conformation, as seen by the dihedral angle of 76.93 (7)° formed between the two aromatic rings. The most notable feature of the crystal packing is the formation of N—H⋯O and N—H⋯N hydrogen bonds that lead to supra­molecular chains orientated along the b axis.

Related literature

For background to the co-crystallization of active pharmaceutical agents, see: Shan & Zaworotko (2008[Shan, N. & Zaworotko, M. J. (2008). Drug Discovery Today, 13, 440-446.]). For background to sulfa drugs, see: Caira (2007[Caira, M. R. (2007). Mol. Pharm. 4, 310-316.]); Nishimori et al. (2009[Nishimori, I., Minakuchi, T., Vullo, D., Scozzafava, A., Innocenti, A. & Supuran, C. T. (2009). J. Med. Chem. 52, 3116-3120.]). For the synthesis, see: Fructos et al. (2006[Fructos, M. R., Trofimenko, S., Mar Díaz-Requejo, M. & Pérez, P. J. (2006). J. Am. Chem. Soc. 128, 11784-11791.]); Kemnitz et al. (1998[Kemnitz, C. R., Karney, W. L. & Borden, W. T. (1998). J. Am. Chem. Soc. 120, 3499-3503.]). For related studies on co-crystal formation, see: Broker & Tiekink (2008[Broker, G. A. & Tiekink, E. R. T. (2008). CrystEngComm, 9, 1096-1109.]); Broker et al. (2008[Broker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879-887.]).

[Scheme 1]

Experimental

Crystal data
  • C16H20N4O3S

  • Mr = 348.42

  • Monoclinic, P 21 /c

  • a = 10.291 (5) Å

  • b = 9.592 (4) Å

  • c = 17.196 (8) Å

  • β = 106.445 (10)°

  • V = 1628.0 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 98 K

  • 0.35 × 0.21 × 0.11 mm

Data collection
  • Rigaku Saturn724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.761, Tmax = 1.000

  • 11164 measured reflections

  • 3749 independent reflections

  • 3341 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.137

  • S = 1.10

  • 3749 reflections

  • 225 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3n⋯O3i 0.88 1.98 2.854 (3) 174
N4—H4n⋯N2ii 0.88 2.22 3.086 (3) 167
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The co-crystallization of active pharmaceutical ingredients is an active area of contemporary crystal engineering (Shan & Zaworotko, 2008). Sulfonamide drugs, e.g. sulfadimidine and sulfameter, attract significant interest in this regard, especially owing to their propensity to form polymorphs (Caira, 2007). They are also receiving renewed attention as selective inhibitors of carbonic anhydrase isoforms (e.g. Nishimori et al., 2009). As a continuation of studies into the phenomenon of co-crystallization (Broker & Tiekink, 2008; Broker et al., 2008), the co-crystallization of N'-(4,6-dimethyl-2-pyrimidinyl)sulfanilamide (sulfadimidine) and 1,4-C6H4I2 in THF was investigated. Colourless crystals of the title compound (I) were obtained unexpectedly; we are not aware of any precedence for this reaction. The insertion of nitrenes into the α C—H bond of cyclic ethers is known (Fructos et al., 2006) and it is suggested that adventitious I2 in 1,4-C6H4I2 reacts with the aryl amine to give a nitrene stabilized by the para-sulfonamide group (Kemnitz et al., 1998).

The molecule of (I), Fig. 1, is bent at the S atom, N3—S1—C7 = 107.85 (10)°, and adopts an overall `L'-conformation; the dihedral angle between the two six-membered rings is 76.93 (7)°. The five membered ring adopts an envelope configuration at the C16 atom. The crystal packing is dominated by N—H···O and N—H···N hydrogen bonding interactions, Table 1, that co-operate to form a supramolecular chain along the b axis, Fig. 2.

Related literature top

For background to the co-crystallization of active pharmaceutical agents, see: Shan & Zaworotko (2008). For background to sulfa drugs, see: Caira (2007); Nishimori et al. (2009). For the synthesis, see: Fructos et al. (2006); Kemnitz et al. (1998). For related studies on co-crystal formation, see: Broker & Tiekink (2008); Broker et al. (2008).

Experimental top

Colourless crystals of (I) were isolated from the attempted co-crystallization of N'-(4,6-dimethyl-2-pyrimidinyl)-sulfanilamide and 1,4-di-iodobenzene in THF.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.95–1.00 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2–1.5Ueq(C). The nitrogen-bound H-atoms were located in a difference Fourier map and were refined with a N–H 0.880±0.001 Å restraint, and with Uiso(H) = 1.2Ueq(N).

Structure description top

The co-crystallization of active pharmaceutical ingredients is an active area of contemporary crystal engineering (Shan & Zaworotko, 2008). Sulfonamide drugs, e.g. sulfadimidine and sulfameter, attract significant interest in this regard, especially owing to their propensity to form polymorphs (Caira, 2007). They are also receiving renewed attention as selective inhibitors of carbonic anhydrase isoforms (e.g. Nishimori et al., 2009). As a continuation of studies into the phenomenon of co-crystallization (Broker & Tiekink, 2008; Broker et al., 2008), the co-crystallization of N'-(4,6-dimethyl-2-pyrimidinyl)sulfanilamide (sulfadimidine) and 1,4-C6H4I2 in THF was investigated. Colourless crystals of the title compound (I) were obtained unexpectedly; we are not aware of any precedence for this reaction. The insertion of nitrenes into the α C—H bond of cyclic ethers is known (Fructos et al., 2006) and it is suggested that adventitious I2 in 1,4-C6H4I2 reacts with the aryl amine to give a nitrene stabilized by the para-sulfonamide group (Kemnitz et al., 1998).

The molecule of (I), Fig. 1, is bent at the S atom, N3—S1—C7 = 107.85 (10)°, and adopts an overall `L'-conformation; the dihedral angle between the two six-membered rings is 76.93 (7)°. The five membered ring adopts an envelope configuration at the C16 atom. The crystal packing is dominated by N—H···O and N—H···N hydrogen bonding interactions, Table 1, that co-operate to form a supramolecular chain along the b axis, Fig. 2.

For background to the co-crystallization of active pharmaceutical agents, see: Shan & Zaworotko (2008). For background to sulfa drugs, see: Caira (2007); Nishimori et al. (2009). For the synthesis, see: Fructos et al. (2006); Kemnitz et al. (1998). For related studies on co-crystal formation, see: Broker & Tiekink (2008); Broker et al. (2008).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Supramolecular chain formation along the b axis in (I) mediated by N—H···N (orange dashed lines) and N—H···N (blue dashed lines) hydrogen bonding.
N-(4,6-Dimethylpyrimidin-2-yl)-4-(oxolan-2-ylamino)benzenesulfonamide top
Crystal data top
C16H20N4O3SF(000) = 736
Mr = 348.42Dx = 1.422 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6601 reflections
a = 10.291 (5) Åθ = 2.5–40.2°
b = 9.592 (4) ŵ = 0.22 mm1
c = 17.196 (8) ÅT = 98 K
β = 106.445 (10)°Block, colourless
V = 1628.0 (13) Å30.35 × 0.21 × 0.11 mm
Z = 4
Data collection top
Saturn724
diffractometer
3749 independent reflections
Radiation source: sealed tube3341 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 2.1°
ω scansh = 1213
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1211
Tmin = 0.761, Tmax = 1.000l = 2217
11164 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0464P)2 + 1.4631P]
where P = (Fo2 + 2Fc2)/3
3749 reflections(Δ/σ)max < 0.001
225 parametersΔρmax = 0.60 e Å3
2 restraintsΔρmin = 0.39 e Å3
Crystal data top
C16H20N4O3SV = 1628.0 (13) Å3
Mr = 348.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.291 (5) ŵ = 0.22 mm1
b = 9.592 (4) ÅT = 98 K
c = 17.196 (8) Å0.35 × 0.21 × 0.11 mm
β = 106.445 (10)°
Data collection top
Saturn724
diffractometer
3749 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3341 reflections with I > 2σ(I)
Tmin = 0.761, Tmax = 1.000Rint = 0.046
11164 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0572 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.10Δρmax = 0.60 e Å3
3749 reflectionsΔρmin = 0.39 e Å3
225 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31473 (6)0.75837 (6)0.11287 (3)0.02795 (16)
O10.23391 (18)0.71472 (18)0.03422 (9)0.0357 (4)
O20.45898 (17)0.76422 (18)0.12920 (9)0.0339 (4)
O30.03413 (17)1.4900 (2)0.10040 (10)0.0406 (4)
N10.40297 (19)0.74868 (19)0.29276 (10)0.0271 (4)
N20.27644 (18)0.53811 (19)0.29370 (10)0.0265 (4)
N30.2755 (2)0.6434 (2)0.17341 (10)0.0283 (4)
H3N0.20480.59060.15120.034*
N40.1102 (2)1.3038 (2)0.18799 (14)0.0421 (5)
H4N0.16581.35940.22270.051*
C10.3215 (2)0.6443 (2)0.25786 (12)0.0258 (4)
C20.4447 (2)0.7458 (2)0.37479 (12)0.0283 (5)
C30.4038 (2)0.6408 (2)0.41786 (12)0.0298 (5)
H30.43360.63950.47540.036*
C40.3183 (2)0.5378 (2)0.37529 (12)0.0283 (4)
C50.5376 (3)0.8614 (3)0.41506 (14)0.0378 (5)
H5A0.62800.84550.40850.057*
H5B0.54350.86370.47290.057*
H5C0.50210.95060.39010.057*
C60.2706 (3)0.4199 (3)0.41651 (14)0.0348 (5)
H6A0.17410.40320.39040.052*
H6B0.28400.44320.47370.052*
H6C0.32230.33570.41250.052*
C70.2564 (2)0.9212 (2)0.13414 (12)0.0279 (4)
C80.3417 (2)1.0138 (2)0.18760 (13)0.0291 (5)
H80.43340.98910.21290.035*
C90.2929 (2)1.1411 (2)0.20371 (13)0.0307 (5)
H90.35131.20380.24020.037*
C100.1574 (2)1.1793 (2)0.16669 (13)0.0318 (5)
C110.0733 (2)1.0854 (2)0.11240 (14)0.0344 (5)
H110.01811.11000.08620.041*
C120.1224 (2)0.9580 (2)0.09687 (13)0.0322 (5)
H120.06450.89490.06050.039*
C130.0074 (3)1.3735 (3)0.14064 (16)0.0384 (6)
H130.06241.30770.09910.046*
C140.0727 (3)1.5920 (3)0.0855 (2)0.0582 (8)
H14A0.11411.60350.02650.070*
H14B0.03601.68320.10850.070*
C150.1763 (3)1.5425 (4)0.1246 (2)0.0573 (8)
H15A0.25341.49710.08480.069*
H15B0.21051.61990.15130.069*
C160.0957 (3)1.4381 (4)0.1863 (2)0.0618 (9)
H16A0.04151.48510.23620.074*
H16B0.15571.36810.20070.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0279 (3)0.0329 (3)0.0212 (2)0.0002 (2)0.0038 (2)0.00097 (19)
O10.0393 (9)0.0426 (10)0.0218 (7)0.0014 (8)0.0032 (7)0.0022 (6)
O20.0289 (8)0.0431 (9)0.0297 (8)0.0015 (7)0.0085 (7)0.0009 (7)
O30.0274 (8)0.0554 (11)0.0384 (9)0.0039 (8)0.0083 (7)0.0090 (8)
N10.0287 (9)0.0260 (9)0.0242 (8)0.0000 (7)0.0037 (7)0.0023 (7)
N20.0261 (9)0.0278 (9)0.0245 (8)0.0005 (7)0.0053 (7)0.0001 (7)
N30.0307 (10)0.0284 (9)0.0221 (8)0.0028 (8)0.0013 (7)0.0012 (7)
N40.0332 (11)0.0337 (11)0.0476 (12)0.0010 (9)0.0079 (9)0.0087 (9)
C10.0250 (10)0.0260 (10)0.0246 (9)0.0039 (8)0.0042 (8)0.0011 (8)
C20.0297 (11)0.0273 (10)0.0251 (10)0.0030 (9)0.0031 (8)0.0039 (8)
C30.0329 (11)0.0349 (12)0.0198 (9)0.0012 (9)0.0044 (8)0.0017 (8)
C40.0277 (11)0.0310 (11)0.0265 (10)0.0024 (9)0.0080 (8)0.0005 (8)
C50.0430 (14)0.0333 (12)0.0319 (11)0.0059 (11)0.0020 (10)0.0070 (9)
C60.0336 (12)0.0388 (13)0.0311 (11)0.0018 (10)0.0075 (10)0.0042 (9)
C70.0262 (11)0.0297 (11)0.0253 (10)0.0007 (9)0.0032 (8)0.0046 (8)
C80.0238 (10)0.0311 (11)0.0286 (10)0.0031 (9)0.0015 (8)0.0048 (8)
C90.0264 (11)0.0318 (11)0.0290 (10)0.0064 (9)0.0001 (9)0.0012 (8)
C100.0286 (11)0.0305 (11)0.0309 (11)0.0021 (9)0.0001 (9)0.0012 (9)
C110.0268 (11)0.0338 (12)0.0355 (11)0.0005 (9)0.0025 (9)0.0001 (9)
C120.0291 (11)0.0341 (12)0.0279 (10)0.0030 (9)0.0011 (9)0.0000 (9)
C130.0300 (12)0.0293 (12)0.0472 (13)0.0007 (10)0.0031 (10)0.0046 (10)
C140.0399 (16)0.0565 (19)0.077 (2)0.0120 (14)0.0149 (15)0.0303 (16)
C150.0522 (18)0.063 (2)0.0633 (18)0.0242 (15)0.0275 (15)0.0178 (15)
C160.0483 (18)0.073 (2)0.074 (2)0.0206 (16)0.0344 (16)0.0345 (18)
Geometric parameters (Å, º) top
S1—O21.4316 (18)C6—H6A0.9800
S1—O11.4351 (17)C6—H6B0.9800
S1—N31.644 (2)C6—H6C0.9800
S1—C71.748 (2)C7—C121.392 (3)
O3—C141.439 (3)C7—C81.396 (3)
O3—C131.442 (3)C8—C91.379 (3)
N1—C11.334 (3)C8—H80.9500
N1—C21.353 (3)C9—C101.407 (3)
N2—C11.340 (3)C9—H90.9500
N2—C41.346 (3)C10—C111.405 (3)
N3—C11.394 (3)C11—C121.377 (3)
N3—H3N0.8800C11—H110.9500
N4—C101.377 (3)C12—H120.9500
N4—C131.420 (3)C13—C161.494 (4)
N4—H4N0.8800C13—H131.0000
C2—C31.384 (3)C14—C151.488 (4)
C2—C51.500 (3)C14—H14A0.9900
C3—C41.386 (3)C14—H14B0.9900
C3—H30.9500C15—C161.523 (4)
C4—C61.490 (3)C15—H15A0.9900
C5—H5A0.9800C15—H15B0.9900
C5—H5B0.9800C16—H16A0.9900
C5—H5C0.9800C16—H16B0.9900
O2—S1—O1119.23 (10)C8—C7—S1121.15 (17)
O2—S1—N3109.23 (10)C9—C8—C7120.0 (2)
O1—S1—N3102.72 (10)C9—C8—H8120.0
O2—S1—C7108.79 (11)C7—C8—H8120.0
O1—S1—C7108.43 (10)C8—C9—C10120.7 (2)
N3—S1—C7107.85 (10)C8—C9—H9119.6
C14—O3—C13107.26 (19)C10—C9—H9119.6
C1—N1—C2115.27 (19)N4—C10—C11122.3 (2)
C1—N2—C4115.51 (18)N4—C10—C9118.9 (2)
C1—N3—S1125.67 (16)C11—C10—C9118.6 (2)
C1—N3—H3N116.9C12—C11—C10120.4 (2)
S1—N3—H3N115.6C12—C11—H11119.8
C10—N4—C13124.3 (2)C10—C11—H11119.8
C10—N4—H4N119.7C11—C12—C7120.4 (2)
C13—N4—H4N112.9C11—C12—H12119.8
N1—C1—N2128.24 (19)C7—C12—H12119.8
N1—C1—N3117.29 (19)N4—C13—O3108.7 (2)
N2—C1—N3114.47 (18)N4—C13—C16116.1 (2)
N1—C2—C3121.2 (2)O3—C13—C16103.8 (2)
N1—C2—C5116.0 (2)N4—C13—H13109.3
C3—C2—C5122.79 (19)O3—C13—H13109.3
C2—C3—C4118.66 (19)C16—C13—H13109.3
C2—C3—H3120.7O3—C14—C15108.2 (2)
C4—C3—H3120.7O3—C14—H14A110.1
N2—C4—C3121.1 (2)C15—C14—H14A110.1
N2—C4—C6116.5 (2)O3—C14—H14B110.1
C3—C4—C6122.36 (19)C15—C14—H14B110.1
C2—C5—H5A109.5H14A—C14—H14B108.4
C2—C5—H5B109.5C14—C15—C16101.9 (2)
H5A—C5—H5B109.5C14—C15—H15A111.4
C2—C5—H5C109.5C16—C15—H15A111.4
H5A—C5—H5C109.5C14—C15—H15B111.4
H5B—C5—H5C109.5C16—C15—H15B111.4
C4—C6—H6A109.5H15A—C15—H15B109.3
C4—C6—H6B109.5C13—C16—C15101.4 (2)
H6A—C6—H6B109.5C13—C16—H16A111.5
C4—C6—H6C109.5C15—C16—H16A111.5
H6A—C6—H6C109.5C13—C16—H16B111.5
H6B—C6—H6C109.5C15—C16—H16B111.5
C12—C7—C8119.9 (2)H16A—C16—H16B109.3
C12—C7—S1118.99 (17)
O2—S1—N3—C156.4 (2)N3—S1—C7—C895.14 (19)
O1—S1—N3—C1176.07 (18)C12—C7—C8—C90.4 (3)
C7—S1—N3—C161.7 (2)S1—C7—C8—C9179.57 (16)
C2—N1—C1—N20.0 (3)C7—C8—C9—C100.1 (3)
C2—N1—C1—N3179.72 (19)C13—N4—C10—C1122.4 (4)
C4—N2—C1—N10.5 (3)C13—N4—C10—C9161.0 (2)
C4—N2—C1—N3179.25 (19)C8—C9—C10—N4176.2 (2)
S1—N3—C1—N11.0 (3)C8—C9—C10—C110.6 (3)
S1—N3—C1—N2179.18 (16)N4—C10—C11—C12175.7 (2)
C1—N1—C2—C30.2 (3)C9—C10—C11—C120.9 (4)
C1—N1—C2—C5179.3 (2)C10—C11—C12—C70.6 (4)
N1—C2—C3—C40.1 (3)C8—C7—C12—C110.0 (3)
C5—C2—C3—C4179.6 (2)S1—C7—C12—C11179.91 (18)
C1—N2—C4—C30.8 (3)C10—N4—C13—O3104.0 (3)
C1—N2—C4—C6179.43 (19)C10—N4—C13—C16139.5 (3)
C2—C3—C4—N20.6 (3)C14—O3—C13—N4153.7 (2)
C2—C3—C4—C6179.2 (2)C14—O3—C13—C1629.5 (3)
O2—S1—C7—C12156.85 (17)C13—O3—C14—C155.4 (3)
O1—S1—C7—C1225.8 (2)O3—C14—C15—C1620.2 (4)
N3—S1—C7—C1284.79 (19)N4—C13—C16—C15160.5 (3)
O2—S1—C7—C823.2 (2)O3—C13—C16—C1541.3 (3)
O1—S1—C7—C8154.31 (18)C14—C15—C16—C1337.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3n···O3i0.881.982.854 (3)174
N4—H4n···N2ii0.882.223.086 (3)167
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC16H20N4O3S
Mr348.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)98
a, b, c (Å)10.291 (5), 9.592 (4), 17.196 (8)
β (°) 106.445 (10)
V3)1628.0 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.35 × 0.21 × 0.11
Data collection
DiffractometerSaturn724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.761, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11164, 3749, 3341
Rint0.046
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.137, 1.10
No. of reflections3749
No. of parameters225
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.60, 0.39

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3n···O3i0.881.982.854 (3)174
N4—H4n···N2ii0.882.223.086 (3)167
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z.
 

Acknowledgements

The Queensland Department of Employment, Economic Development and Innovation is thanked for an International Fellowship to DJY.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBroker, G. A., Bettens, R. P. A. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 879–887.  Web of Science CSD CrossRef CAS Google Scholar
First citationBroker, G. A. & Tiekink, E. R. T. (2008). CrystEngComm, 9, 1096–1109.  Web of Science CSD CrossRef Google Scholar
First citationCaira, M. R. (2007). Mol. Pharm. 4, 310–316.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFructos, M. R., Trofimenko, S., Mar Díaz-Requejo, M. & Pérez, P. J. (2006). J. Am. Chem. Soc. 128, 11784–11791.  Web of Science CrossRef PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationKemnitz, C. R., Karney, W. L. & Borden, W. T. (1998). J. Am. Chem. Soc. 120, 3499–3503.  Web of Science CrossRef CAS Google Scholar
First citationNishimori, I., Minakuchi, T., Vullo, D., Scozzafava, A., Innocenti, A. & Supuran, C. T. (2009). J. Med. Chem. 52, 3116–3120.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc. The Woodlands, Texas, USA.  Google Scholar
First citationShan, N. & Zaworotko, M. J. (2008). Drug Discovery Today, 13, 440–446.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds