metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Dianilinedi­bromidozinc(II)

aMaterials Chemistry Laboratry, Department of Chemistry, GC University, Lahore 54000, Pakistan, and bDepartment of Physics, Ondokuz Mayis University, TR-55139 Samsun, Turkey
*Correspondence e-mail: iuklodhi@yahoo.com, onurs@omu.edu.tr

(Received 16 October 2009; accepted 22 October 2009; online 28 October 2009)

In the title compound, [ZnBr2(C6H7N)2], the Zn atom (site symmetry 2) adopts a distorted tetra­hedral ZnN2Br2 geometry. In the crystal, mol­ecules are linked by N—H⋯Br hydrogen bonds, generating sheets containing R22(8) loops.

Related literature

For background to the applications of zinc complexes, see: Ibrahim et al. (2003[Ibrahim, M. M., Ichikawa, K. & Shiro, M. (2003). Inorg. Chim. Acta, 353, 187-196.]); Nesterova et al. (2005[Nesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2005). Inorg. Chim. Acta, 358, 2725-2738.]); Park et al. (2008[Park, B. K., Lee, H. S., Lee, E. Y., Kwak, H., Lee, Y. M., Lee, Y. J., Jun, J. Y., Kim, C., Kim, S. J. & Kim, Y. (2008). J. Mol. Struct. 890, 123-129.]); Wu et al. (2008[Wu, F. Y., Xie, F. Y., Wu, Y.-M. & Hong, J.-I. (2008). Spectrochim. Acta Part A, 70, 1127-1133.]). For graph-set theory, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C6H7N)2]

  • Mr = 411.44

  • Monoclinic, C 2/c

  • a = 25.7545 (16) Å

  • b = 4.9415 (3) Å

  • c = 12.1919 (8) Å

  • β = 111.035 (3)°

  • V = 1448.21 (16) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.19 mm−1

  • T = 296 K

  • 0.43 × 0.41 × 0.40 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: none

  • 7092 measured reflections

  • 1796 independent reflections

  • 1489 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.068

  • S = 1.18

  • 1796 reflections

  • 86 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N1 2.057 (2)
Zn1—Br1 2.3851 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Br1i 0.90 (3) 2.75 (3) 3.597 (3) 157 (2)
N1—H2A⋯Br1ii 0.87 (3) 2.76 (3) 3.564 (3) 156 (3)
Symmetry codes: (i) [x, -y, z-{\script{1\over 2}}]; (ii) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Researches have worked on synthesis and X-ray studies of organo-zinc complexes for their applications in catalysis (Ibrahim et al., 2003, Park et al., 2008) and supramolecular chemistry (Nesterova et al., 2005). These complexes act as fluorescent probe for labeling proteins (Wu et al., 2008). Herein, we report the synthesis and crystal structure of the title compound, (I).

The molecular structure of (I) is presented in Fig. 1. The compound crystallizes in the space group C2/c with Z' = 1/2. The ZnII ion is located on a 2-fold axis and is coordinated by two Br atoms [Zn1—Br/Br1iii = 2.3851 (3) Å] and two amino N atoms from aniline ligands [Zn1—N1/N1iii = 2.057 (2) Å] [symmetry code: (iii) 1 - x, y, 3/2 - z]. The geometry around the ZnII ion is that of a tetrahedron. The benzene ring plane is approximately planar, with maximum deviation from the least-squares plane being 0.004 (2)Å for atom C2.

Molecules of the title compound are linked in to shetts by a combination of N—H···Br hydrogen bonds (Table 1). Amino atom N1 in the reference molecule at (x, y, z) acts as hydrogen-bond donor, via H2A, respectively, to atom Br1 in the molecule at (x, y - 1, z), so forming a C(4)[R22(8)] (Bernstein et al., 1995) chain of rings running parallel to the [010] direction (Fig. 2). Similarly, amino atom N1 in the reference molecule at (x, y, z) acts as hydrogen-bond donor, via H1A, respectively, to atom Br1 in the molecule at (x, -y, z - 1/2), so forming a C(4)[R22(8)] chain of rings running parallel to the [001] direction and centrosymmetric R22(8) ring centred at (1/2, 0, 1/2) (Fig. 3).

Related literature top

For background t the applications of zinc complexes, see: Ibrahim et al. (2003); Nesterova et al. (2005); Park et al. (2008); Wu et al. (2008). For graph-set theory, see: Bernstein et al. (1995).

Experimental top

Zinc bromide (1.125 g, 5 mmol) was added to distilled water (20 ml). Aniline (0.93 g, 10 mmol) was added to the above solution and stirred at room temperature for 5 minutes. White precipitate formed was filtered off, washed with distilled water, dried and recrystallized in methanol to yield colourless blocks of (I).

Refinement top

All C-bonded H atoms were refined using a riding model, with C—H distances constrained to 0.93Å and with Uiso = 1.2Ueq(C). Amino H atoms were located in difference map and refined freely.

Structure description top

Researches have worked on synthesis and X-ray studies of organo-zinc complexes for their applications in catalysis (Ibrahim et al., 2003, Park et al., 2008) and supramolecular chemistry (Nesterova et al., 2005). These complexes act as fluorescent probe for labeling proteins (Wu et al., 2008). Herein, we report the synthesis and crystal structure of the title compound, (I).

The molecular structure of (I) is presented in Fig. 1. The compound crystallizes in the space group C2/c with Z' = 1/2. The ZnII ion is located on a 2-fold axis and is coordinated by two Br atoms [Zn1—Br/Br1iii = 2.3851 (3) Å] and two amino N atoms from aniline ligands [Zn1—N1/N1iii = 2.057 (2) Å] [symmetry code: (iii) 1 - x, y, 3/2 - z]. The geometry around the ZnII ion is that of a tetrahedron. The benzene ring plane is approximately planar, with maximum deviation from the least-squares plane being 0.004 (2)Å for atom C2.

Molecules of the title compound are linked in to shetts by a combination of N—H···Br hydrogen bonds (Table 1). Amino atom N1 in the reference molecule at (x, y, z) acts as hydrogen-bond donor, via H2A, respectively, to atom Br1 in the molecule at (x, y - 1, z), so forming a C(4)[R22(8)] (Bernstein et al., 1995) chain of rings running parallel to the [010] direction (Fig. 2). Similarly, amino atom N1 in the reference molecule at (x, y, z) acts as hydrogen-bond donor, via H1A, respectively, to atom Br1 in the molecule at (x, -y, z - 1/2), so forming a C(4)[R22(8)] chain of rings running parallel to the [001] direction and centrosymmetric R22(8) ring centred at (1/2, 0, 1/2) (Fig. 3).

For background t the applications of zinc complexes, see: Ibrahim et al. (2003); Nesterova et al. (2005); Park et al. (2008); Wu et al. (2008). For graph-set theory, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level. [Symmety code: (iii) 1 - x, y, 3/2 - z.]
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing the formation of an R22(8) dimer along [010].
[Figure 3] Fig. 3. Part of the crystal structure of the title compound, showing the formation of an R22(8) dimer along [001]. Hydrogen bonds are indicated by dashed lines. H atoms not involved in these interactions have been omitted for clarity. (Symmetry codes as in Table 1.)
Dianilinedibromidozinc(II) top
Crystal data top
[ZnBr2(C6H7N)2]Z = 4
Mr = 411.44F(000) = 800
Monoclinic, C2/cDx = 1.887 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 25.7545 (16) ÅCell parameters from 7092 reflections
b = 4.9415 (3) ŵ = 7.19 mm1
c = 12.1919 (8) ÅT = 296 K
β = 111.035 (3)°Block, colourless
V = 1448.21 (16) Å30.43 × 0.41 × 0.40 mm
Data collection top
Bruker APEXII CCD
diffractometer
1489 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 28.3°, θmin = 1.7°
φ and ω scansh = 3432
7092 measured reflectionsk = 46
1796 independent reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.035P)2]
where P = (Fo2 + 2Fc2)/3
1796 reflections(Δ/σ)max = 0.001
86 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[ZnBr2(C6H7N)2]V = 1448.21 (16) Å3
Mr = 411.44Z = 4
Monoclinic, C2/cMo Kα radiation
a = 25.7545 (16) ŵ = 7.19 mm1
b = 4.9415 (3) ÅT = 296 K
c = 12.1919 (8) Å0.43 × 0.41 × 0.40 mm
β = 111.035 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
1489 reflections with I > 2σ(I)
7092 measured reflectionsRint = 0.026
1796 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.36 e Å3
1796 reflectionsΔρmin = 0.60 e Å3
86 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.61172 (10)0.0453 (4)0.7448 (2)0.0332 (5)
C20.65438 (13)0.1002 (6)0.8489 (3)0.0483 (7)
H20.64980.23030.89980.058*
C30.70386 (14)0.0379 (7)0.8775 (3)0.0618 (8)
H30.73280.00130.94750.074*
C40.71102 (14)0.2333 (7)0.8038 (3)0.0620 (9)
H40.74450.32690.82400.074*
C50.66823 (14)0.2887 (6)0.7000 (3)0.0543 (8)
H50.67280.42000.64950.065*
C60.61856 (12)0.1502 (5)0.6703 (2)0.0428 (6)
H60.58970.18870.60010.051*
N10.55851 (9)0.1809 (4)0.7147 (2)0.0350 (5)
H1A0.5450 (13)0.231 (6)0.638 (3)0.052 (8)*
H2A0.5592 (14)0.334 (6)0.750 (3)0.058 (9)*
Zn10.50000.05076 (7)0.75000.03217 (12)
Br10.546312 (11)0.32589 (5)0.91739 (2)0.04053 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0370 (14)0.0280 (12)0.0384 (13)0.0019 (10)0.0181 (11)0.0068 (9)
C20.0499 (18)0.0449 (14)0.0472 (16)0.0039 (14)0.0136 (14)0.0063 (13)
C30.0452 (19)0.064 (2)0.063 (2)0.0048 (16)0.0033 (16)0.0045 (16)
C40.048 (2)0.0555 (18)0.085 (3)0.0135 (15)0.0271 (19)0.0186 (18)
C50.057 (2)0.0478 (16)0.069 (2)0.0092 (14)0.0348 (18)0.0008 (14)
C60.0466 (17)0.0427 (15)0.0412 (15)0.0038 (12)0.0184 (13)0.0023 (11)
N10.0406 (13)0.0297 (11)0.0374 (12)0.0024 (9)0.0176 (10)0.0032 (9)
Zn10.0379 (2)0.0308 (2)0.0310 (2)0.0000.01626 (18)0.000
Br10.0558 (2)0.03761 (16)0.02807 (15)0.00087 (11)0.01487 (12)0.00366 (9)
Geometric parameters (Å, º) top
C1—C21.375 (4)C5—C61.380 (4)
C1—C61.380 (3)C5—H50.9300
C1—N11.450 (3)C6—H60.9300
C2—C31.376 (4)N1—H1A0.90 (3)
C2—H20.9300N1—H2A0.87 (3)
C3—C41.376 (5)Zn1—N12.057 (2)
C3—H30.9300Zn1—N1i2.057 (2)
C4—C51.375 (5)Zn1—Br12.3851 (3)
C4—H40.9300Zn1—Br1i2.3851 (3)
C2—C1—C6119.8 (2)C5—C6—C1120.0 (3)
C2—C1—N1120.8 (2)C5—C6—H6120.0
C6—C1—N1119.3 (2)C1—C6—H6120.0
C1—C2—C3119.8 (3)C1—N1—Zn1112.76 (14)
C1—C2—H2120.1C1—N1—H1A111.5 (19)
C3—C2—H2120.1Zn1—N1—H1A109 (2)
C2—C3—C4120.8 (3)C1—N1—H2A115 (2)
C2—C3—H3119.6Zn1—N1—H2A106 (2)
C4—C3—H3119.6H1A—N1—H2A102 (3)
C5—C4—C3119.4 (3)N1i—Zn1—N1112.35 (13)
C5—C4—H4120.3N1i—Zn1—Br1108.50 (7)
C3—C4—H4120.3N1—Zn1—Br1108.50 (7)
C4—C5—C6120.3 (3)N1i—Zn1—Br1i108.50 (7)
C4—C5—H5119.9N1—Zn1—Br1i108.50 (7)
C6—C5—H5119.9Br1—Zn1—Br1i110.49 (5)
C6—C1—C2—C30.8 (4)N1—C1—C6—C5177.4 (2)
N1—C1—C2—C3177.7 (2)C2—C1—N1—Zn198.8 (2)
C1—C2—C3—C40.8 (5)C6—C1—N1—Zn178.1 (2)
C2—C3—C4—C50.5 (5)C1—N1—Zn1—N1i152.2 (2)
C3—C4—C5—C60.2 (5)C1—N1—Zn1—Br132.26 (19)
C4—C5—C6—C10.2 (4)C1—N1—Zn1—Br1i87.82 (17)
C2—C1—C6—C50.5 (4)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1ii0.90 (3)2.75 (3)3.597 (3)157 (2)
N1—H2A···Br1iii0.87 (3)2.76 (3)3.564 (3)156 (3)
Symmetry codes: (ii) x, y, z1/2; (iii) x, y1, z.

Experimental details

Crystal data
Chemical formula[ZnBr2(C6H7N)2]
Mr411.44
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)25.7545 (16), 4.9415 (3), 12.1919 (8)
β (°) 111.035 (3)
V3)1448.21 (16)
Z4
Radiation typeMo Kα
µ (mm1)7.19
Crystal size (mm)0.43 × 0.41 × 0.40
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7092, 1796, 1489
Rint0.026
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.068, 1.18
No. of reflections1796
No. of parameters86
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.60

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Zn1—N12.057 (2)Zn1—Br12.3851 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Br1i0.90 (3)2.75 (3)3.597 (3)157 (2)
N1—H2A···Br1ii0.87 (3)2.76 (3)3.564 (3)156 (3)
Symmetry codes: (i) x, y, z1/2; (ii) x, y1, z.
 

Acknowledgements

The authors wish to acknowledge the Materials Chemistry Laboratry, GC University, Pakistan, for the use of the diffractometer.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationIbrahim, M. M., Ichikawa, K. & Shiro, M. (2003). Inorg. Chim. Acta, 353, 187–196.  Web of Science CSD CrossRef CAS Google Scholar
First citationNesterova, O. V., Petrusenko, S. R., Kokozay, V. N., Skelton, B. W., Bjernemose, J. K. & Raithby, P. R. (2005). Inorg. Chim. Acta, 358, 2725–2738.  Web of Science CrossRef CAS Google Scholar
First citationPark, B. K., Lee, H. S., Lee, E. Y., Kwak, H., Lee, Y. M., Lee, Y. J., Jun, J. Y., Kim, C., Kim, S. J. & Kim, Y. (2008). J. Mol. Struct. 890, 123–129.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWu, F. Y., Xie, F. Y., Wu, Y.-M. & Hong, J.-I. (2008). Spectrochim. Acta Part A, 70, 1127–1133.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds