metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido{2-hydr­­oxy-N′-[phen­yl(2-pyrid­yl)methyl­ene]benzohydrazide}copper(II)

aDongchang College of Liaocheng University, Shandong 25200, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lidacheng@lcu.edu.cn

(Received 17 September 2009; accepted 21 September 2009; online 26 September 2009)

In the title complex, [CuBr2(C19H15N3O2)], the metal ion is coordinated by the N,N′,O-tridentate 2-hydr­oxy-N′-[phen­yl(2-pyrid­yl)methyl­ene]benzohydrazide ligand and two bromide ions, resulting in a distorted CuN2OBr2 square-based pyramidal coordination geometry with one bromide ion in the apical site. An intra­molecular N—H⋯O hydrogen bond occurs in the ligand. In the crystal, mol­ecules are connected by inter­molecular C—H⋯O, C—H⋯Br and O—H⋯Br inter­actions.

Related literature

For the crystal structures of metal complexes with 2-benzoyl­pyridine salicyloylhydrazone, see: Sur et al. (1993[Sur, H., Roychowdhuri, S. & Seth, S. (1993). Acta Cryst. C49, 870-873.]); Seth & Chakraborty (1984[Seth, S. & Chakraborty, S. (1984). Acta Cryst. C40, 1530-1533.]); Dan et al. (1989[Dan, J., Seth, S. & Chakraborty, S. (1989). Acta Cryst. C45, 1018-1021.]).

[Scheme 1]

Experimental

Crystal data
  • [CuBr2(C19H15N3O2)]

  • Mr = 540.70

  • Monoclinic, P 21 /n

  • a = 8.0779 (11) Å

  • b = 16.302 (2) Å

  • c = 15.0376 (18) Å

  • β = 97.624 (2)°

  • V = 1962.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.20 mm−1

  • T = 298 K

  • 0.23 × 0.19 × 0.15 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.381, Tmax = 0.509

  • 8676 measured reflections

  • 3446 independent reflections

  • 2426 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.082

  • S = 1.01

  • 3446 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −0.58 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N2 1.966 (3)
Cu1—N3 2.018 (3)
Cu1—O1 2.083 (2)
Cu1—Br1 2.3469 (6)
Cu1—Br2 2.5931 (8)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 1.92 2.574 (4) 131
O2—H2⋯Br2i 0.82 2.35 3.153 (3) 166
C11—H11⋯O1ii 0.93 2.58 3.503 (5) 170
C10—H10⋯Br1ii 0.93 2.81 3.575 (4) 141
C15—H15⋯Br2iii 0.93 2.82 3.742 (4) 171
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iii) x-1, y, z.

Data collection: SMART (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2003[Bruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A large number of salicyloylhydrazone complexes have been reported and studied. However, the metal complexes of 2-benzoylpyridine salicyloylhydrazone reported are limited to Zn (Sur et al., 1993), Ni (Seth et al., 1984) and (Dan et al., 1989). Here, we have synthesized and will report a new 2-benzoylpyridine salicyloylhydrazone complex Cu(C19H15N3O2)Br2, which was was characterized by X-ray diffraction and elemental analysis. The crystals suitable for X-ray diffraction studies were obtained by slow evaporation of the mother liquid. In this paper, we will display the crystal structure of the title complex.

The title complex(Fig.1), Cu(C19H15N3O2)Br2 is composed of a Cu atom, a 2-benzoylpyridine salicyloylhydrazone ligand molecule and two bromines. The ligand is bound to Cu atom by a carbonyl O, a pyridine N and a hydrazone N to form two juxtaposed five-membered chelate rings. Cu lies in a five-coordinated and square-pyramid coordination geometry with the ON2Br2 set of donor atoms. The equatorial coordination sits are occupied by O1, N2, N3, Br1 and the axial coordination atom is Br2 with the distance of Cu1—Br2 2.5931 (8) A. In the structure, there are intramolecular N—H···O interactions. Except that, the complex is linked into one-dimensional chain by intermolecular C—H···Br interactions, and the neighboring chains form a two-dimensional network structure via C—H···Br and O—H···Br interactions. A three-dimensional network structure is connected via C—H···O and C—H···Br interactions between adjacent two-dimensional networks. So the complex is linked into a three-dimensional network structure via intermolecular C—H···O, C—H···Br and O—H···Br interactions.

Related literature top

For the crystal structures of metal complexes with 2-benzoylpyridine salicyloylhydrazone, see: Sur et al. (1993); Seth et al. (1984); Dan et al. (1989).

Experimental top

CuBr2.H2O (0.25 mmol 0.065 g) was dissolved in 10 ml MeOH and a 10 ml 1,1-dichlorinemethane solution of 2-benzoylpyridine salicyloylhydrazone (0.25 mmol 0.080 g) was added dropwise to the former. The mixture was stirred for six hours until the solution color became dark green.The dark green solution was stirred for five hours and filtered. The filtrate layered with Et2O to resulted in dark green blocks of (I) at room temperature. m.p.>573 K. Elemental analysis for C19H15CuN3O2Br2 calculated: C 42.21, H 2.80 N 7.77%; found: C 42.32, H 2.54, N 7.68%.

Refinement top

All H atoms were placed geometrically and treated as riding on their parent atoms with C—H = 0.93 Å, O—H = 0.82Å and N—H = 0.86Å [Uiso(H) = 1.2Ueq(carrier)].

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% displacement ellipsoids. C-bound H atoms have been omitted for clarity.
Dibromido{2-hydroxy-N'-[phenyl(2- pyridyl)methylene]benzohydrazide}copper(II) top
Crystal data top
[CuBr2(C19H15N3O2)]F(000) = 1060
Mr = 540.70Dx = 1.830 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2246 reflections
a = 8.0779 (11) Åθ = 2.5–25.1°
b = 16.302 (2) ŵ = 5.20 mm1
c = 15.0376 (18) ÅT = 298 K
β = 97.624 (2)°Block, dark green
V = 1962.8 (4) Å30.23 × 0.19 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
3446 independent reflections
Radiation source: fine-focus sealed tube2426 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 99
Tmin = 0.381, Tmax = 0.509k = 1719
8676 measured reflectionsl = 1711
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0396P)2]
where P = (Fo2 + 2Fc2)/3
3446 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.94 e Å3
0 restraintsΔρmin = 0.58 e Å3
Crystal data top
[CuBr2(C19H15N3O2)]V = 1962.8 (4) Å3
Mr = 540.70Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.0779 (11) ŵ = 5.20 mm1
b = 16.302 (2) ÅT = 298 K
c = 15.0376 (18) Å0.23 × 0.19 × 0.15 mm
β = 97.624 (2)°
Data collection top
Bruker SMART CCD
diffractometer
3446 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
2426 reflections with I > 2σ(I)
Tmin = 0.381, Tmax = 0.509Rint = 0.034
8676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.082H-atom parameters constrained
S = 1.01Δρmax = 0.94 e Å3
3446 reflectionsΔρmin = 0.58 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.63317 (6)0.70295 (3)0.15437 (3)0.03541 (16)
Br10.63665 (6)0.81344 (2)0.05459 (3)0.04420 (15)
Br20.92790 (7)0.70189 (3)0.24686 (4)0.06244 (18)
N10.5874 (4)0.53300 (18)0.1785 (2)0.0390 (9)
H10.56670.48700.20270.047*
N20.5516 (4)0.60651 (17)0.2140 (2)0.0349 (8)
N30.5009 (4)0.75634 (19)0.2434 (2)0.0347 (8)
O10.6872 (4)0.60672 (14)0.07174 (18)0.0389 (7)
O20.5854 (4)0.37576 (16)0.1626 (2)0.0585 (10)
H20.58000.32730.17650.088*
C10.6586 (5)0.5380 (2)0.1020 (3)0.0337 (10)
C20.7003 (5)0.4611 (2)0.0589 (3)0.0341 (10)
C30.6649 (5)0.3826 (2)0.0886 (3)0.0392 (11)
C40.7099 (6)0.3140 (2)0.0427 (3)0.0481 (12)
H40.68680.26180.06250.058*
C50.7887 (6)0.3237 (3)0.0321 (3)0.0523 (13)
H50.81610.27740.06310.063*
C60.8283 (6)0.3997 (3)0.0622 (3)0.0530 (13)
H60.88420.40530.11210.064*
C70.7826 (6)0.4679 (2)0.0164 (3)0.0453 (12)
H70.80760.51980.03650.054*
C80.4677 (5)0.6152 (2)0.2817 (3)0.0347 (10)
C90.4411 (5)0.7033 (2)0.3016 (3)0.0330 (10)
C100.3652 (5)0.7305 (2)0.3723 (3)0.0382 (11)
H100.33050.69340.41310.046*
C110.3407 (6)0.8137 (2)0.3823 (3)0.0464 (12)
H110.28690.83320.42900.056*
C120.3965 (6)0.8670 (2)0.3226 (3)0.0474 (12)
H120.37900.92320.32750.057*
C130.4786 (6)0.8367 (2)0.2553 (3)0.0441 (12)
H130.52040.87350.21660.053*
C140.4049 (5)0.5474 (2)0.3330 (3)0.0323 (10)
C150.2398 (5)0.5486 (2)0.3512 (3)0.0410 (11)
H150.16920.59140.33000.049*
C160.1819 (6)0.4863 (2)0.4004 (3)0.0466 (12)
H160.07250.48780.41330.056*
C170.2839 (6)0.4219 (3)0.4306 (3)0.0530 (13)
H170.24350.37980.46340.064*
C180.4474 (6)0.4201 (3)0.4120 (3)0.0520 (13)
H180.51650.37630.43190.062*
C190.5076 (5)0.4825 (2)0.3643 (3)0.0428 (11)
H190.61800.48140.35290.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0471 (3)0.0269 (3)0.0353 (3)0.0016 (2)0.0168 (3)0.0001 (2)
Br10.0552 (3)0.0367 (2)0.0453 (3)0.0031 (2)0.0238 (2)0.0088 (2)
Br20.0575 (3)0.0528 (3)0.0716 (4)0.0197 (2)0.0113 (3)0.0204 (3)
N10.057 (2)0.0228 (17)0.042 (2)0.0029 (15)0.0223 (19)0.0013 (15)
N20.048 (2)0.0262 (18)0.033 (2)0.0023 (15)0.0149 (18)0.0039 (15)
N30.041 (2)0.0322 (19)0.033 (2)0.0046 (15)0.0129 (17)0.0022 (15)
O10.060 (2)0.0265 (15)0.0343 (18)0.0017 (13)0.0203 (15)0.0002 (12)
O20.086 (3)0.0286 (16)0.068 (2)0.0033 (15)0.038 (2)0.0041 (15)
C10.038 (3)0.034 (2)0.031 (3)0.0028 (18)0.010 (2)0.0000 (19)
C20.039 (3)0.025 (2)0.038 (3)0.0001 (17)0.007 (2)0.0042 (18)
C30.042 (3)0.031 (2)0.046 (3)0.0022 (19)0.009 (2)0.004 (2)
C40.053 (3)0.026 (2)0.066 (3)0.001 (2)0.008 (3)0.004 (2)
C50.069 (4)0.038 (3)0.049 (3)0.010 (2)0.007 (3)0.014 (2)
C60.075 (4)0.045 (3)0.043 (3)0.008 (2)0.021 (3)0.009 (2)
C70.062 (3)0.033 (2)0.044 (3)0.001 (2)0.016 (3)0.004 (2)
C80.034 (2)0.034 (2)0.036 (3)0.0020 (18)0.005 (2)0.0017 (19)
C90.038 (3)0.032 (2)0.030 (2)0.0024 (18)0.009 (2)0.0025 (18)
C100.049 (3)0.036 (2)0.033 (3)0.0011 (19)0.016 (2)0.0008 (19)
C110.058 (3)0.046 (3)0.039 (3)0.006 (2)0.020 (2)0.006 (2)
C120.073 (4)0.031 (2)0.040 (3)0.008 (2)0.016 (3)0.002 (2)
C130.065 (3)0.028 (2)0.042 (3)0.007 (2)0.016 (3)0.003 (2)
C140.040 (3)0.030 (2)0.029 (2)0.0015 (18)0.009 (2)0.0044 (18)
C150.040 (3)0.034 (2)0.050 (3)0.0055 (19)0.009 (2)0.001 (2)
C160.041 (3)0.042 (3)0.060 (3)0.009 (2)0.020 (3)0.003 (2)
C170.071 (4)0.039 (3)0.052 (3)0.011 (2)0.019 (3)0.009 (2)
C180.066 (3)0.037 (3)0.054 (3)0.011 (2)0.014 (3)0.015 (2)
C190.041 (3)0.045 (3)0.045 (3)0.005 (2)0.012 (2)0.006 (2)
Geometric parameters (Å, º) top
Cu1—N21.966 (3)C6—H60.9300
Cu1—N32.018 (3)C7—H70.9300
Cu1—O12.083 (2)C8—C141.474 (5)
Cu1—Br12.3469 (6)C8—C91.490 (5)
Cu1—Br22.5931 (8)C9—C101.370 (5)
N1—C11.355 (5)C10—C111.381 (5)
N1—N21.358 (4)C10—H100.9300
N1—H10.8600C11—C121.369 (6)
N2—C81.304 (5)C11—H110.9300
N3—C131.338 (5)C12—C131.373 (5)
N3—C91.363 (5)C12—H120.9300
O1—C11.242 (4)C13—H130.9300
O2—C31.361 (5)C14—C191.388 (5)
O2—H20.8200C14—C151.397 (5)
C1—C21.471 (5)C15—C161.375 (5)
C2—C71.393 (5)C15—H150.9300
C2—C31.396 (5)C16—C171.374 (6)
C3—C41.388 (5)C16—H160.9300
C4—C51.373 (6)C17—C181.386 (6)
C4—H40.9300C17—H170.9300
C5—C61.373 (6)C18—C191.371 (5)
C5—H50.9300C18—H180.9300
C6—C71.383 (5)C19—H190.9300
N2—Cu1—N378.67 (12)C6—C7—C2121.9 (4)
N2—Cu1—O177.25 (11)C6—C7—H7119.0
N3—Cu1—O1153.13 (12)C2—C7—H7119.0
N2—Cu1—Br1159.76 (10)N2—C8—C14125.3 (3)
N3—Cu1—Br198.37 (9)N2—C8—C9111.4 (3)
O1—Cu1—Br1100.10 (7)C14—C8—C9123.3 (3)
N2—Cu1—Br295.15 (10)N3—C9—C10121.8 (3)
N3—Cu1—Br2100.15 (10)N3—C9—C8114.2 (3)
O1—Cu1—Br293.71 (8)C10—C9—C8124.0 (3)
Br1—Cu1—Br2105.07 (2)C9—C10—C11119.2 (4)
C1—N1—N2114.6 (3)C9—C10—H10120.4
C1—N1—H1122.7C11—C10—H10120.4
N2—N1—H1122.7C12—C11—C10119.2 (4)
C8—N2—N1124.2 (3)C12—C11—H11120.4
C8—N2—Cu1120.7 (2)C10—C11—H11120.4
N1—N2—Cu1115.1 (2)C11—C12—C13119.2 (4)
C13—N3—C9118.0 (3)C11—C12—H12120.4
C13—N3—Cu1127.2 (3)C13—C12—H12120.4
C9—N3—Cu1114.6 (2)N3—C13—C12122.6 (4)
C1—O1—Cu1113.3 (2)N3—C13—H13118.7
C3—O2—H2109.5C12—C13—H13118.7
O1—C1—N1119.1 (3)C19—C14—C15119.2 (3)
O1—C1—C2122.9 (4)C19—C14—C8121.1 (4)
N1—C1—C2118.0 (3)C15—C14—C8119.7 (3)
C7—C2—C3118.3 (4)C16—C15—C14119.8 (4)
C7—C2—C1116.9 (3)C16—C15—H15120.1
C3—C2—C1124.9 (4)C14—C15—H15120.1
O2—C3—C4121.6 (4)C17—C16—C15120.7 (4)
O2—C3—C2118.4 (3)C17—C16—H16119.7
C4—C3—C2120.0 (4)C15—C16—H16119.7
C5—C4—C3119.7 (4)C16—C17—C18119.7 (4)
C5—C4—H4120.1C16—C17—H17120.1
C3—C4—H4120.1C18—C17—H17120.1
C4—C5—C6121.9 (4)C19—C18—C17120.2 (4)
C4—C5—H5119.1C19—C18—H18119.9
C6—C5—H5119.1C17—C18—H18119.9
C5—C6—C7118.2 (4)C18—C19—C14120.4 (4)
C5—C6—H6120.9C18—C19—H19119.8
C7—C6—H6120.9C14—C19—H19119.8
C1—N1—N2—C8172.6 (4)C3—C4—C5—C61.5 (8)
C1—N1—N2—Cu16.5 (4)C4—C5—C6—C71.7 (8)
N3—Cu1—N2—C84.6 (3)C5—C6—C7—C20.7 (7)
O1—Cu1—N2—C8172.6 (3)C3—C2—C7—C60.5 (7)
Br1—Cu1—N2—C888.0 (4)C1—C2—C7—C6179.9 (4)
Br2—Cu1—N2—C894.8 (3)N1—N2—C8—C142.8 (6)
N3—Cu1—N2—N1174.6 (3)Cu1—N2—C8—C14178.1 (3)
O1—Cu1—N2—N16.6 (3)N1—N2—C8—C9176.9 (4)
Br1—Cu1—N2—N191.2 (4)Cu1—N2—C8—C92.2 (5)
Br2—Cu1—N2—N186.1 (3)C13—N3—C9—C102.2 (6)
N2—Cu1—N3—C13179.8 (4)Cu1—N3—C9—C10172.6 (3)
O1—Cu1—N3—C13153.1 (3)C13—N3—C9—C8178.5 (4)
Br1—Cu1—N3—C1320.1 (4)Cu1—N3—C9—C86.8 (4)
Br2—Cu1—N3—C1387.0 (3)N2—C8—C9—N33.1 (5)
N2—Cu1—N3—C96.0 (3)C14—C8—C9—N3176.6 (4)
O1—Cu1—N3—C932.7 (5)N2—C8—C9—C10176.2 (4)
Br1—Cu1—N3—C9165.7 (3)C14—C8—C9—C104.1 (7)
Br2—Cu1—N3—C987.2 (3)N3—C9—C10—C113.4 (7)
N2—Cu1—O1—C16.0 (3)C8—C9—C10—C11177.3 (4)
N3—Cu1—O1—C132.8 (5)C9—C10—C11—C121.6 (7)
Br1—Cu1—O1—C1165.6 (3)C10—C11—C12—C131.4 (7)
Br2—Cu1—O1—C188.4 (3)C9—N3—C13—C120.9 (6)
Cu1—O1—C1—N14.5 (5)Cu1—N3—C13—C12174.9 (3)
Cu1—O1—C1—C2174.8 (3)C11—C12—C13—N32.7 (7)
N2—N1—C1—O11.1 (6)N2—C8—C14—C1948.2 (6)
N2—N1—C1—C2179.6 (3)C9—C8—C14—C19132.1 (4)
O1—C1—C2—C73.1 (6)N2—C8—C14—C15132.3 (4)
N1—C1—C2—C7176.1 (4)C9—C8—C14—C1547.4 (6)
O1—C1—C2—C3177.5 (4)C19—C14—C15—C160.7 (6)
N1—C1—C2—C33.2 (6)C8—C14—C15—C16178.8 (4)
C7—C2—C3—O2179.6 (4)C14—C15—C16—C171.2 (7)
C1—C2—C3—O20.3 (6)C15—C16—C17—C180.5 (7)
C7—C2—C3—C40.7 (7)C16—C17—C18—C190.6 (7)
C1—C2—C3—C4180.0 (4)C17—C18—C19—C141.1 (7)
O2—C3—C4—C5179.5 (4)C15—C14—C19—C180.4 (7)
C2—C3—C4—C50.2 (7)C8—C14—C19—C18179.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.922.574 (4)131
O2—H2···Br2i0.822.353.153 (3)166
C11—H11···O1ii0.932.583.503 (5)170
C10—H10···Br1ii0.932.813.575 (4)141
C15—H15···Br2iii0.932.823.742 (4)171
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x1/2, y+3/2, z+1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formula[CuBr2(C19H15N3O2)]
Mr540.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)8.0779 (11), 16.302 (2), 15.0376 (18)
β (°) 97.624 (2)
V3)1962.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)5.20
Crystal size (mm)0.23 × 0.19 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.381, 0.509
No. of measured, independent and
observed [I > 2σ(I)] reflections
8676, 3446, 2426
Rint0.034
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.082, 1.01
No. of reflections3446
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 0.58

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N21.966 (3)Cu1—Br12.3469 (6)
Cu1—N32.018 (3)Cu1—Br22.5931 (8)
Cu1—O12.083 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.861.922.574 (4)131
O2—H2···Br2i0.822.353.153 (3)166
C11—H11···O1ii0.932.583.503 (5)170
C10—H10···Br1ii0.932.813.575 (4)141
C15—H15···Br2iii0.932.823.742 (4)171
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x1/2, y+3/2, z+1/2; (iii) x1, y, z.
 

Acknowledgements

We acknowledge the financial support of the National Natural Science Foundation of China (grant No. 20671048).

References

First citationBruker (2003). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDan, J., Seth, S. & Chakraborty, S. (1989). Acta Cryst. C45, 1018–1021.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSeth, S. & Chakraborty, S. (1984). Acta Cryst. C40, 1530–1533.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSur, H., Roychowdhuri, S. & Seth, S. (1993). Acta Cryst. C49, 870–873.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds