metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m892-m893

Bromidobis(N,N′-di­phenyl­thio­urea-κS)copper(I) monohydrate

aDepartment of Chemistry, Government College University, Lahore, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, cDepartment of Chemistry, University of Engineering and Technology, Lahore, Pakistan, and dDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 4 July 2009; accepted 4 July 2009; online 11 July 2009)

In the title compound, [CuBr(C13H12N2S)2]·H2O, the CuI atom adopts a slightly distorted trigonal-planar coordination arising from two S atoms of two diphenyl­thio­urea ligands and a bromide ion. There are two intra­molecular N—H⋯Br hydrogen bonds completing twisted six-membered rings with R(6) motifs. The dihedral angles between the aromatic rings in the ligands are 62.11 (13) and 85.73 (13)°. In the crystal, components are linked by N—H⋯O, O—H⋯S and O—H⋯π inter­actions. There also exist ππ inter­actions with a distance of 3.876 (2) Å between the centroids of benzene rings of two different ligands. Together, the inter­molecular inter­actions lead to a three-dimensional network.

Related literature

For related structures, see: Khan et al. (2007[Khan, I. U., Mufakkar, M., Ahmad, S., Fun, H.-K. & Chantrapromma, S. (2007). Acta Cryst. E63, m2550-m2551.]); Mufakkar et al. (2007[Mufakkar, M., Ahmad, S., Khan, I. U., Fun, H.-K. & Chantrapromma, S. (2007). Acta Cryst. E63, m2384.]); Zoufalá et al. (2007[Zoufalá, P., Rüffer, T., Lang, H., Ahmad, S. & Mufakkar, M. (2007). Anal. Sci. X-ray Struct. Anal. Online, 23, x219-x220.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • [CuBr(C13H12N2S)2]·H2O

  • Mr = 618.08

  • Triclinic, [P \overline 1]

  • a = 9.6195 (5) Å

  • b = 12.1937 (6) Å

  • c = 12.7969 (6) Å

  • α = 89.345 (2)°

  • β = 73.154 (1)°

  • γ = 69.225 (2)°

  • V = 1336.20 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.50 mm−1

  • T = 296 K

  • 0.28 × 0.23 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.509, Tmax = 0.606

  • 27804 measured reflections

  • 6568 independent reflections

  • 5426 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.122

  • S = 1.04

  • 6568 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −1.27 e Å−3

Table 1
Selected geometric parameters (Å, °)

Cu1—Br1 2.3387 (5)
Cu1—S1 2.2263 (8)
Cu1—S2 2.2129 (8)
Br1—Cu1—S1 125.03 (3)
Br1—Cu1—S2 126.04 (3)
S1—Cu1—S2 108.93 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.86 2.35 3.046 (4) 139
O1—H1O⋯S1ii 0.83 2.66 3.462 (3) 163
N2—H2N⋯Br1 0.86 2.59 3.435 (2) 169
N3—H3N⋯O1iii 0.86 2.16 2.957 (3) 155
N4—H4N⋯Br1 0.86 2.72 3.573 (2) 170
C13—H13⋯N1 0.93 2.58 3.000 (4) 108
C13—H13⋯S2iv 0.93 2.86 3.523 (3) 129
O1—H2OCgDiii 0.80 2.78 3.306 (3) 125
Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y+1, z; (iii) -x+1, -y+1, -z; (iv) -x+1, -y, -z+1. CgD is the centroid of the C21–C26 benzene ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

The crystal structure of tetrakis(N-methylthiourea-S)copper(I) iodide (Mufakkar et al., 2007)), tris(N,N'-dibutylthiourea-S)iodidocopper(I) 0.6-hydrate (Khan et al., 2007) and tetrakis(N-methylthiourea)copper(I) chloride (Zoufalá et al., 2007) have been reported by our group containing substituted thiourea. In continuation to the copper complexes of substituted thiourea, the title compound (I), (Fig. 1) is now reported.

In (I), the copper atom is coordinated to two S-atoms of two diphenylthiourea ligands and the Br-atom. Cu1 is at a distance of -0.0061 (5) Å from the plane of S1/S2/BR1. In one ligand the benzene rings A (C2—C7) and B (C8—C13) make a dihedral angle of 85.73 (13)°, whereas in the other ligand the benzene rings C (C15—C20) and D (C21—C26) are oriented at dihedral angle of 62.11 (13)°. There exist two intramolecular H-bonds of N–H···Br type, completing two twisted six membered rings with ring motifs R11(6) (Bernstein et al., 1995). The NH-groups not involving in H-bonding with Br-atom, make intermolecular H-bonds with O-atom of water. It is interesting that only one H-atom of water molecule make H-bonding with one of S-atom, whereas the other make a π interaction (Table 1). There exist ππ interactions between CgA···CgCi [symmetry code: i = -1 + x, y, 1 + z] and CgC···CgAii [symmetry code: ii = 1 + x, y, -1 + z] at a distance of 3.876 (2) Å, where CgA and CgC are the centroids of benzene rings A and C, respectively. The molecules are linked each other through H-bonding in the form of three dimensional polymeric network.

Related literature top

For related structures, see: Khan et al. (2007); Mufakkar et al. (2007); Zoufalá et al. (2007). For graph-set notation, see: Bernstein et al. (1995). CgD is the centroid of the C21–C26 benzene ring.

Experimental top

Copper(I) bromide (0.14 g, 1.0 mmol) was dissolved in 15 ml of acetonitrile and it was added to two equivalents of N,N'-diphenylthiourea in acetonitrile. White precipitate formed immediately were filtered and the filtrate was kept for crystallization. As a result colourless prisms of (I) were obtained after 24 h.

Refinement top

The H-atoms were positioned geometrically, with N—H = 0.86 Å for NH-groups and C—H = 0.93 Å for aromatic rings. After this the H-atoms of water molecule were taken from difference Fourier map in two steps. All the H-atoms were constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N, O), where x = 1.2 for all H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 30% probability level. H-atoms are shown by small spheres of arbitrary radius.
[Figure 2] Fig. 2. The partial packing of (I), showing that molecules form ring motifs and form three dimensional polymeric network.
Bromidobis(N,N'-diphenylthiourea-κS)copper(I) monohydrate top
Crystal data top
[CuBr(C13H12N2S)2]·H2OZ = 2
Mr = 618.08F(000) = 628
Triclinic, P1Dx = 1.536 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.6195 (5) ÅCell parameters from 6568 reflections
b = 12.1937 (6) Åθ = 2.3–28.3°
c = 12.7969 (6) ŵ = 2.50 mm1
α = 89.345 (2)°T = 296 K
β = 73.154 (1)°Prismatic, colourless
γ = 69.225 (2)°0.28 × 0.23 × 0.20 mm
V = 1336.20 (11) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6568 independent reflections
Radiation source: fine-focus sealed tube5426 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 2.3°
ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1616
Tmin = 0.509, Tmax = 0.606l = 1715
27804 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0609P)2 + 1.6374P]
where P = (Fo2 + 2Fc2)/3
6568 reflections(Δ/σ)max < 0.001
316 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 1.27 e Å3
Crystal data top
[CuBr(C13H12N2S)2]·H2Oγ = 69.225 (2)°
Mr = 618.08V = 1336.20 (11) Å3
Triclinic, P1Z = 2
a = 9.6195 (5) ÅMo Kα radiation
b = 12.1937 (6) ŵ = 2.50 mm1
c = 12.7969 (6) ÅT = 296 K
α = 89.345 (2)°0.28 × 0.23 × 0.20 mm
β = 73.154 (1)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6568 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5426 reflections with I > 2σ(I)
Tmin = 0.509, Tmax = 0.606Rint = 0.024
27804 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 1.04Δρmax = 0.47 e Å3
6568 reflectionsΔρmin = 1.27 e Å3
316 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.33324 (5)0.31120 (3)0.30610 (3)0.0533 (1)
Cu10.44586 (4)0.10611 (3)0.26717 (3)0.0365 (1)
S10.38543 (9)0.02233 (6)0.37916 (6)0.0371 (2)
S20.62984 (9)0.00799 (6)0.11533 (5)0.0363 (2)
N10.1849 (3)0.0049 (2)0.57745 (18)0.0329 (6)
N20.2381 (3)0.1621 (2)0.52856 (18)0.0332 (7)
N30.7569 (3)0.0539 (2)0.08459 (18)0.0333 (6)
N40.5479 (3)0.2083 (2)0.02461 (19)0.0340 (7)
C10.2624 (3)0.0486 (2)0.5043 (2)0.0285 (7)
C20.2046 (3)0.1261 (2)0.5679 (2)0.0296 (7)
C30.0747 (4)0.1555 (3)0.5850 (3)0.0389 (9)
C40.0924 (5)0.2732 (3)0.5780 (3)0.0513 (11)
C50.2378 (5)0.3602 (3)0.5535 (4)0.0632 (13)
C60.3667 (5)0.3298 (3)0.5391 (4)0.0621 (13)
C70.3512 (4)0.2133 (3)0.5473 (3)0.0448 (10)
C80.1611 (3)0.2336 (2)0.6302 (2)0.0312 (8)
C90.0889 (4)0.3536 (3)0.6266 (3)0.0481 (10)
C100.0182 (5)0.4277 (3)0.7237 (3)0.0619 (13)
C110.0184 (5)0.3834 (3)0.8227 (3)0.0564 (11)
C120.0909 (4)0.2642 (3)0.8259 (3)0.0449 (10)
C130.1640 (4)0.1892 (3)0.7301 (2)0.0376 (8)
C140.6462 (3)0.0959 (2)0.0114 (2)0.0284 (7)
C150.8697 (3)0.0636 (3)0.1082 (2)0.0321 (7)
C160.8232 (4)0.1582 (3)0.1121 (3)0.0410 (9)
C170.9331 (5)0.2719 (3)0.1320 (3)0.0536 (11)
C181.0894 (4)0.2896 (3)0.1513 (3)0.0552 (11)
C191.1351 (4)0.1968 (3)0.1499 (3)0.0533 (10)
C201.0255 (3)0.0819 (3)0.1277 (3)0.0413 (9)
C210.5400 (3)0.2845 (2)0.0615 (2)0.0337 (8)
C220.4526 (4)0.2811 (3)0.1278 (3)0.0557 (12)
C230.4443 (5)0.3550 (4)0.2108 (4)0.0703 (17)
C240.5207 (5)0.4323 (3)0.2251 (3)0.0628 (14)
C250.6103 (5)0.4334 (4)0.1598 (4)0.0647 (14)
C260.6218 (5)0.3594 (3)0.0775 (3)0.0514 (11)
O10.1532 (3)0.8554 (2)0.29920 (19)0.0501 (8)
H1N0.116730.037850.635660.0395*
H2N0.274830.196540.474310.0399*
H30.024070.096780.601120.0466*
H3N0.760770.100510.135420.0399*
H40.004910.293440.590050.0615*
H4N0.485080.236790.089330.0408*
H50.249300.438990.546600.0755*
H60.465260.388720.523670.0746*
H70.438360.193410.539040.0537*
H90.087890.384130.559800.0576*
H100.029920.508310.721710.0742*
H110.030260.433680.887440.0678*
H120.090720.234120.893050.0539*
H130.215040.109090.732460.0452*
H160.718620.145480.101420.0492*
H170.902250.336030.132320.0645*
H181.163400.365900.165260.0663*
H191.240410.209840.163950.0639*
H201.057050.018340.125950.0495*
H220.399070.229590.117360.0667*
H230.386460.352070.256970.0844*
H240.511770.483810.279010.0757*
H250.664220.484650.170830.0781*
H260.683640.360040.033680.0618*
H1O0.222820.869570.316210.0601*
H2O0.191510.785370.297070.0601*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0631 (2)0.0397 (2)0.0533 (2)0.0185 (2)0.0129 (2)0.0145 (2)
Cu10.0378 (2)0.0381 (2)0.0288 (2)0.0137 (2)0.0038 (1)0.0081 (1)
S10.0439 (4)0.0281 (3)0.0275 (3)0.0113 (3)0.0041 (3)0.0020 (2)
S20.0398 (4)0.0300 (3)0.0285 (3)0.0075 (3)0.0020 (3)0.0107 (3)
N10.0369 (12)0.0270 (11)0.0266 (10)0.0108 (10)0.0011 (9)0.0016 (8)
N20.0428 (13)0.0266 (11)0.0262 (10)0.0131 (10)0.0043 (9)0.0043 (8)
N30.0330 (11)0.0321 (12)0.0272 (10)0.0096 (10)0.0013 (9)0.0078 (9)
N40.0356 (12)0.0284 (11)0.0280 (11)0.0072 (10)0.0010 (9)0.0072 (9)
C10.0285 (12)0.0262 (12)0.0266 (12)0.0073 (10)0.0060 (9)0.0046 (9)
C20.0346 (13)0.0298 (13)0.0237 (11)0.0129 (11)0.0065 (10)0.0062 (9)
C30.0377 (15)0.0432 (16)0.0379 (15)0.0174 (13)0.0118 (12)0.0095 (12)
C40.061 (2)0.055 (2)0.0535 (19)0.0380 (18)0.0198 (16)0.0120 (16)
C50.081 (3)0.0372 (18)0.070 (2)0.0297 (19)0.011 (2)0.0072 (17)
C60.052 (2)0.0324 (17)0.082 (3)0.0068 (15)0.0023 (19)0.0101 (17)
C70.0370 (15)0.0352 (16)0.0577 (19)0.0126 (13)0.0093 (14)0.0148 (14)
C80.0323 (13)0.0262 (13)0.0332 (13)0.0089 (10)0.0093 (10)0.0003 (10)
C90.066 (2)0.0290 (15)0.0455 (17)0.0106 (14)0.0203 (16)0.0045 (12)
C100.079 (3)0.0293 (16)0.061 (2)0.0008 (17)0.023 (2)0.0063 (15)
C110.063 (2)0.0451 (19)0.0463 (19)0.0051 (17)0.0126 (16)0.0163 (15)
C120.0524 (18)0.0476 (18)0.0328 (14)0.0154 (15)0.0138 (13)0.0001 (13)
C130.0428 (16)0.0317 (14)0.0340 (14)0.0082 (12)0.0122 (12)0.0029 (11)
C140.0277 (12)0.0293 (13)0.0276 (12)0.0115 (10)0.0064 (9)0.0066 (10)
C150.0318 (13)0.0350 (14)0.0234 (11)0.0086 (11)0.0040 (10)0.0025 (10)
C160.0389 (15)0.0413 (16)0.0409 (16)0.0144 (13)0.0095 (12)0.0046 (12)
C170.070 (2)0.0355 (17)0.0500 (19)0.0156 (16)0.0150 (17)0.0070 (14)
C180.057 (2)0.0422 (19)0.0456 (18)0.0061 (16)0.0153 (16)0.0076 (14)
C190.0344 (16)0.065 (2)0.0468 (18)0.0018 (15)0.0127 (14)0.0062 (16)
C200.0356 (15)0.0489 (18)0.0384 (15)0.0164 (13)0.0087 (12)0.0002 (13)
C210.0342 (14)0.0269 (13)0.0326 (13)0.0080 (11)0.0036 (11)0.0095 (10)
C220.060 (2)0.061 (2)0.066 (2)0.0357 (19)0.0326 (19)0.0340 (19)
C230.078 (3)0.085 (3)0.071 (3)0.041 (3)0.044 (2)0.044 (2)
C240.073 (3)0.051 (2)0.054 (2)0.0160 (19)0.0136 (19)0.0303 (17)
C250.087 (3)0.051 (2)0.068 (2)0.042 (2)0.021 (2)0.0278 (19)
C260.067 (2)0.0484 (19)0.0520 (19)0.0341 (18)0.0217 (17)0.0159 (15)
O10.0479 (13)0.0506 (14)0.0404 (12)0.0115 (11)0.0050 (10)0.0059 (10)
Geometric parameters (Å, º) top
Cu1—Br12.3387 (5)C15—C201.380 (5)
Cu1—S12.2263 (8)C16—C171.385 (5)
Cu1—S22.2129 (8)C17—C181.387 (7)
S1—C11.709 (3)C18—C191.354 (5)
S2—C141.705 (2)C19—C201.394 (5)
O1—H1O0.8300C21—C221.367 (5)
O1—H2O0.8000C21—C261.381 (5)
N1—C11.336 (4)C22—C231.387 (6)
N1—C21.424 (3)C23—C241.368 (7)
N2—C11.343 (3)C24—C251.367 (7)
N2—C81.418 (3)C25—C261.382 (6)
N3—C151.428 (4)C3—H30.9300
N3—C141.332 (3)C4—H40.9300
N4—C141.340 (3)C5—H50.9300
N4—C211.435 (3)C6—H60.9300
N1—H1N0.8600C7—H70.9300
N2—H2N0.8600C9—H90.9300
N3—H3N0.8600C10—H100.9300
N4—H4N0.8600C11—H110.9300
C2—C31.377 (5)C12—H120.9300
C2—C71.384 (5)C13—H130.9300
C3—C41.385 (5)C16—H160.9300
C4—C51.371 (6)C17—H170.9300
C5—C61.379 (7)C18—H180.9300
C6—C71.377 (5)C19—H190.9300
C8—C131.387 (4)C20—H200.9300
C8—C91.386 (4)C22—H220.9300
C9—C101.387 (5)C23—H230.9300
C10—C111.372 (5)C24—H240.9300
C11—C121.377 (5)C25—H250.9300
C12—C131.380 (5)C26—H260.9300
C15—C161.383 (5)
Br1—Cu1—S1125.03 (3)C22—C21—C26120.7 (3)
Br1—Cu1—S2126.04 (3)N4—C21—C26119.9 (3)
S1—Cu1—S2108.93 (3)N4—C21—C22119.4 (3)
Cu1—S1—C1110.49 (9)C21—C22—C23119.5 (4)
Cu1—S2—C14111.94 (9)C22—C23—C24120.3 (4)
H1O—O1—H2O96.00C23—C24—C25119.7 (4)
C1—N1—C2126.0 (2)C24—C25—C26120.9 (4)
C1—N2—C8129.7 (2)C21—C26—C25118.9 (4)
C14—N3—C15124.0 (2)C2—C3—H3120.00
C14—N4—C21124.7 (2)C4—C3—H3120.00
C1—N1—H1N117.00C5—C4—H4120.00
C2—N1—H1N117.00C3—C4—H4120.00
C8—N2—H2N115.00C4—C5—H5120.00
C1—N2—H2N115.00C6—C5—H5120.00
C14—N3—H3N118.00C7—C6—H6120.00
C15—N3—H3N118.00C5—C6—H6120.00
C21—N4—H4N118.00C2—C7—H7120.00
C14—N4—H4N118.00C6—C7—H7120.00
S1—C1—N2119.5 (2)C10—C9—H9120.00
N1—C1—N2118.9 (2)C8—C9—H9120.00
S1—C1—N1121.50 (19)C11—C10—H10120.00
C3—C2—C7120.4 (3)C9—C10—H10120.00
N1—C2—C3119.0 (3)C10—C11—H11120.00
N1—C2—C7120.6 (3)C12—C11—H11120.00
C2—C3—C4119.4 (4)C11—C12—H12120.00
C3—C4—C5120.6 (4)C13—C12—H12120.00
C4—C5—C6119.5 (4)C12—C13—H13120.00
C5—C6—C7120.8 (4)C8—C13—H13120.00
C2—C7—C6119.3 (4)C15—C16—H16120.00
N2—C8—C9117.3 (2)C17—C16—H16120.00
C9—C8—C13119.9 (3)C18—C17—H17120.00
N2—C8—C13122.7 (2)C16—C17—H17120.00
C8—C9—C10119.3 (3)C17—C18—H18120.00
C9—C10—C11120.7 (3)C19—C18—H18120.00
C10—C11—C12119.8 (3)C20—C19—H19120.00
C11—C12—C13120.4 (3)C18—C19—H19120.00
C8—C13—C12119.8 (3)C15—C20—H20120.00
S2—C14—N3120.56 (19)C19—C20—H20120.00
S2—C14—N4120.7 (2)C23—C22—H22120.00
N3—C14—N4118.8 (2)C21—C22—H22120.00
N3—C15—C16120.2 (3)C22—C23—H23120.00
C16—C15—C20120.3 (3)C24—C23—H23120.00
N3—C15—C20119.5 (3)C25—C24—H24120.00
C15—C16—C17119.7 (4)C23—C24—H24120.00
C16—C17—C18119.6 (4)C24—C25—H25120.00
C17—C18—C19120.6 (3)C26—C25—H25120.00
C18—C19—C20120.5 (4)C21—C26—H26121.00
C15—C20—C19119.3 (3)C25—C26—H26121.00
Br1—Cu1—S1—C17.29 (13)C2—C3—C4—C50.5 (6)
S2—Cu1—S1—C1172.19 (12)C3—C4—C5—C62.0 (7)
Br1—Cu1—S2—C1417.05 (13)C4—C5—C6—C71.1 (7)
S1—Cu1—S2—C14163.48 (12)C5—C6—C7—C21.4 (6)
Cu1—S1—C1—N1166.2 (2)N2—C8—C9—C10177.1 (4)
Cu1—S1—C1—N211.3 (3)C13—C8—C9—C101.0 (6)
Cu1—S2—C14—N3176.2 (2)N2—C8—C13—C12177.9 (3)
Cu1—S2—C14—N44.0 (3)C9—C8—C13—C122.0 (6)
C2—N1—C1—S17.0 (4)C8—C9—C10—C110.4 (7)
C2—N1—C1—N2175.5 (3)C9—C10—C11—C120.7 (7)
C1—N1—C2—C3130.1 (3)C10—C11—C12—C130.3 (7)
C1—N1—C2—C753.2 (4)C11—C12—C13—C81.6 (6)
C8—N2—C1—S1169.9 (3)N3—C15—C16—C17178.2 (3)
C8—N2—C1—N112.6 (5)C20—C15—C16—C172.2 (5)
C1—N2—C8—C9150.7 (4)N3—C15—C20—C19179.5 (3)
C1—N2—C8—C1333.2 (5)C16—C15—C20—C190.9 (5)
C15—N3—C14—S21.0 (4)C15—C16—C17—C182.1 (5)
C15—N3—C14—N4179.1 (3)C16—C17—C18—C190.6 (6)
C14—N3—C15—C1666.0 (4)C17—C18—C19—C200.8 (6)
C14—N3—C15—C20114.4 (4)C18—C19—C20—C150.7 (5)
C21—N4—C14—S2172.0 (2)N4—C21—C22—C23179.8 (3)
C21—N4—C14—N37.9 (5)C26—C21—C22—C231.0 (5)
C14—N4—C21—C2284.2 (4)N4—C21—C26—C25178.9 (3)
C14—N4—C21—C2695.1 (4)C22—C21—C26—C251.8 (5)
N1—C2—C3—C4178.8 (3)C21—C22—C23—C241.2 (6)
C7—C2—C3—C42.0 (5)C22—C23—C24—C252.5 (7)
N1—C2—C7—C6179.6 (3)C23—C24—C25—C261.6 (7)
C3—C2—C7—C63.0 (5)C24—C25—C26—C210.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.353.046 (4)139
O1—H1O···S1ii0.832.663.462 (3)163
N2—H2N···Br10.862.593.435 (2)169
N3—H3N···O1iii0.862.162.957 (3)155
N4—H4N···Br10.862.723.573 (2)170
C13—H13···N10.932.583.000 (4)108
C13—H13···S2iv0.932.863.523 (3)129
O1—H2O···CgDiii0.802.783.306 (3)125
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[CuBr(C13H12N2S)2]·H2O
Mr618.08
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)9.6195 (5), 12.1937 (6), 12.7969 (6)
α, β, γ (°)89.345 (2), 73.154 (1), 69.225 (2)
V3)1336.20 (11)
Z2
Radiation typeMo Kα
µ (mm1)2.50
Crystal size (mm)0.28 × 0.23 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.509, 0.606
No. of measured, independent and
observed [I > 2σ(I)] reflections
27804, 6568, 5426
Rint0.024
(sin θ/λ)max1)0.666
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.122, 1.04
No. of reflections6568
No. of parameters316
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 1.27

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Cu1—Br12.3387 (5)Cu1—S22.2129 (8)
Cu1—S12.2263 (8)
Br1—Cu1—S1125.03 (3)S1—Cu1—S2108.93 (3)
Br1—Cu1—S2126.04 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.862.353.046 (4)139
O1—H1O···S1ii0.832.663.462 (3)163
N2—H2N···Br10.862.593.435 (2)169
N3—H3N···O1iii0.862.162.957 (3)155
N4—H4N···Br10.862.723.573 (2)170
C13—H13···N10.932.583.000 (4)108
C13—H13···S2iv0.932.863.523 (3)129
O1—H2O···CgDiii0.802.783.306 (3)125
Symmetry codes: (i) x, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) x+1, y, z+1.
 

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer at GCU, Lahore and for technical support, respectively.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKhan, I. U., Mufakkar, M., Ahmad, S., Fun, H.-K. & Chantrapromma, S. (2007). Acta Cryst. E63, m2550–m2551.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMufakkar, M., Ahmad, S., Khan, I. U., Fun, H.-K. & Chantrapromma, S. (2007). Acta Cryst. E63, m2384.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZoufalá, P., Rüffer, T., Lang, H., Ahmad, S. & Mufakkar, M. (2007). Anal. Sci. X-ray Struct. Anal. Online, 23, x219–x220.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 8| August 2009| Pages m892-m893
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds