organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Tri­methyl­phosphine oxide dihydrate

crossmark logo

aDepartment of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia, and bJožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
*Correspondence e-mail: matic.lozinsek@ijs.si

Edited by W. T. A. Harrison, University of Aberdeen, United Kingdom (Received 21 March 2023; accepted 4 April 2023; online 14 April 2023)

The title hydrate, Me3PO·2H2O, crystallizes in the ortho­rhom­bic space group Pbca with eight formula units per unit cell. The extended structure displays O—H⋯O hydrogen bonding, with Me3PO mol­ecules as acceptors and water mol­ecules acting as donors and acceptors of hydrogen bonds, forming hydrogen-bonded layers, which propagate in the ac plane.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Tertiary phosphine oxides, R3P=O (R = alk­yl/ar­yl), are good hydrogen-bond acceptors and have been employed for co-crystallization and stabilization of hydrogen-bond donor species such as hydrogen peroxide (Arp et al., 2019[Arp, F. F., Bhuvanesh, N. & Blümel, J. (2019). Dalton Trans. 48, 14312-14325.]) and di(hydro­per­oxy)alkanes (Ahn et al., 2015[Ahn, S. H., Cluff, K. J., Bhuvanesh, N. & Blümel, J. (2015). Angew. Chem. Int. Ed. 54, 13341-13345.]). However, only a limited number of simple tertiary phosphine oxide hydrates have been structurally characterized by single-crystal X-ray diffraction. For example: tri­cyclo­hexyl­phosphine oxide hydrate, Cy3PO·H2O (Cambridge Structural Database refcode ZOQHEU; Hilliard et al. 2014[Hilliard, C. R., Kharel, S., Cluff, K. J., Bhuvanesh, N., Gladysz, J. A. & Blümel, J. (2014). Chem. Eur. J. 20, 17292-17295.]; Thomas et al., 2019[Thomas, S. D., Tizzard, G. J., Coles, S. J. & Owen, G. R. (2019). CSD Communication (CCDC 1970272). CCDC, Cambridge, England.]); tri­phenyl­phosphine oxide hemihydrate, Ph3PO·0.5H2O (JEDTOB; Baures & Silverton, 1990[Baures, P. W. & Silverton, J. V. (1990). Acta Cryst. C46, 715-717.]; Baures, 1991[Baures, P. W. (1991). Acta Cryst. C47, 2715-2716.]; Ng, 2009[Ng, S. W. (2009). Acta Cryst. E65, o1431.]); tri-p-tolyl­phosphine oxide hemihydrate p-Tol3PO·0.5H2O (JULBAT; Churchill et al., 1993[Churchill, M. R., See, R. F., Randall, S. L. & Atwood, J. D. (1993). Acta Cryst. C49, 345-347.]); tris­(2,4,6-tri­meth­oxy­phen­yl)phosphine oxide hydrate, [(CH3O)3C6H2]3PO·H2O (WAMXIR; Chaloner et al., 1993[Chaloner, P. A., Harrison, R. M. & Hitchcock, P. B. (1993). Acta Cryst. C49, 1072-1075.]); tris­(2,4,6-tri­meth­oxy­phen­yl)phosphine oxide dihydrate, [(CH3O)3C6H2]3PO·2H2O (LICVUO; Dunbar & Haefner, 1994[Dunbar, K. R. & Haefner, S. C. (1994). Polyhedron, 13, 727-736.]); di-o-tolyl­phenyl­phosphine oxide hydrate, o-Tol2PhPO·H2O (POMRUH; Arp et al., 2019[Arp, F. F., Bhuvanesh, N. & Blümel, J. (2019). Dalton Trans. 48, 14312-14325.]). The absence of crystal structures of tri­alkyl­phosphine oxide hydrates with a short alkyl chain is particularly noteworthy. Herein, the crystal structure of the title phosphine oxide hydrate is reported.

Tri­methyl­phosphine oxide dihydrate crystallizes in the ortho­rhom­bic space group Pbca with one Me3PO and two H2O mol­ecules in the asymmetric unit (Fig. 1[link]). The P=O bond length [1.5067 (7) Å] and P—C distances [1.7805 (12), 1.7809 (11), and 1.7819 (11) Å] are in good agreement with the bond distances reported in crystal structures of tri­methyl­phosphine oxide (FAKLUY; Engelhardt et al., 1986[Engelhardt, L. M., Raston, C. L., Whitaker, C. R. & White, A. H. (1986). Aust. J. Chem. 39, 2151-2154.]; Begimova et al., 2016[Begimova, G., Tupikina, E. Yu., Yu, V. K., Denisov, G. S., Bodensteiner, M. & Shenderovich, I. G. (2016). J. Phys. Chem. C, 120, 8717-8729.]).

[Figure 1]
Figure 1
The asymmetric unit and the atom-labelling scheme of the Me3PO·2H2O crystal structure. Displacement ellipsoids are depicted at the 50% probability level, hydrogen atoms are shown as spheres of arbitrary radius, and hydrogen bonds are indicated by blue dashed lines.

The tri­methyl­phosphine oxide mol­ecule is an acceptor of two O⋯H—O hydrogen bonds, whereas both water mol­ecules are donors of hydrogen bonds to Me3PO and H2O, and acceptors of hydrogen bonds from adjacent water mol­ecules (Table 1[link], Fig. 2[link]). Two Me3PO and six H2O mol­ecules form a hydrogen-bonded 16-membered ring (Fig. 2[link]) with an R86(16) graph-set motif (Etter, 1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]). Each water mol­ecule participates in three rings, whereas the tri­methyl­phosphine mol­ecule participates in two rings. These rings are inter­connected into layers that extend parallel to the ac plane, whereby each ring is surrounded by six other rings (Figs. 2[link], 3[link]). Hydrogen-bonded layers and layers of Me3P groups are stacked along the b-axis direction (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.807 (17) 1.976 (18) 2.7787 (10) 173.2 (16)
O2—H3⋯O3 0.789 (18) 2.046 (18) 2.8261 (11) 169.7 (15)
O1—H2⋯O2i 0.873 (18) 1.981 (18) 2.8460 (12) 170.6 (14)
O2—H4⋯O1ii 0.834 (17) 1.993 (17) 2.8218 (11) 172.0 (14)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Hydrogen-bonded rings (depicted by blue dashed lines) are conjoined into layers parallel to the ac-plane.
[Figure 3]
Figure 3
Crystal packing and the unit cell of Me3PO·2H2O viewed along the crystallographic b-axis (top) and c-axis (bottom). Hydrogen bonds are indicated by blue dashed lines.

Synthesis and crystallization

Tri­methyl­phosphine oxide (2.3 mg) was dissolved in a mixture of acetone-d6 (0.6 ml) and diethyl ether-d10 (0.3 ml) in an NMR tube that was capped and cooled to −20 °C in an ethanol cooling bath. The Dewar flask containing the bath and sample was sealed and placed in a freezer at −80 °C. Crystals of Me3PO·2H2O grew within 3 days. The single crystals were examined, selected, and transferred to the diffractometer employing a previously described low-temperature crystal-mounting procedure (Lozinšek et al., 2021[Lozinšek, M., Mercier, H. P. A. & Schrobilgen, G. J. (2021). Angew. Chem. Int. Ed. 60, 8149-8156.]). The crystals melt at room temperature.

Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link]. Positions and isotropic thermal displacement parameters of hydrogen atoms were freely refined (Cooper et al., 2010[Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100-1107.]).

Table 2
Experimental details

Crystal data
Chemical formula C3H9OP·2H2O
Mr 128.10
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 150
a, b, c (Å) 9.33514 (8), 11.39118 (9), 13.23961 (11)
V3) 1407.88 (2)
Z 8
Radiation type Cu Kα
μ (mm−1) 2.88
Crystal size (mm) 0.70 × 0.24 × 0.13
 
Data collection
Diffractometer SuperNova, Dual, Cu at home/near, Atlas
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.])
Tmin, Tmax 0.299, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 24977, 1451, 1417
Rint 0.023
(sin θ/λ)max−1) 0.628
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.057, 1.04
No. of reflections 1451
No. of parameters 117
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.27, −0.24
Computer programs: CrysAlis PRO (Rigaku OD, 2023[Rigaku OD (2023). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2023); cell refinement: CrysAlis PRO (Rigaku OD, 2023); data reduction: CrysAlis PRO (Rigaku OD, 2023); program(s) used to solve structure: SHELXT2018/2 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2019/2 (Sheldrick, 2015b); molecular graphics: Olex2 1.5 (Dolomanov et al., 2009), DIAMOND (Brandenburg, 2005); software used to prepare material for publication: Olex2 1.5 (Dolomanov et al., 2009), publCIF (Westrip, 2010).

(Dimethylphosphoryl)methane dihydrate top
Crystal data top
C3H9OP·2H2ODx = 1.209 Mg m3
Mr = 128.10Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 18569 reflections
a = 9.33514 (8) Åθ = 3.3–75.4°
b = 11.39118 (9) ŵ = 2.88 mm1
c = 13.23961 (11) ÅT = 150 K
V = 1407.88 (2) Å3Block, colourless
Z = 80.70 × 0.24 × 0.13 mm
F(000) = 560
Data collection top
SuperNova, Dual, Cu at home/near, Atlas
diffractometer
1451 independent reflections
Radiation source: micro-focus sealed X-ray tube, SuperNova (Cu) X-ray Source1417 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
Detector resolution: 5.2466 pixels mm-1θmax = 75.5°, θmin = 7.0°
ω scansh = 1111
Absorption correction: gaussian
(CrysalisPro; Rigaku OD, 2023)
k = 1414
Tmin = 0.299, Tmax = 1.000l = 1616
24977 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.032P)2 + 0.4017P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.057(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.27 e Å3
1451 reflectionsΔρmin = 0.24 e Å3
117 parametersExtinction correction: SHELXL2019/2 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0019 (4)
Primary atom site location: dual
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.29293 (2)0.43133 (2)0.43709 (2)0.01874 (11)
O30.38810 (7)0.33831 (6)0.48229 (5)0.02332 (17)
O10.50092 (9)0.18661 (7)0.33846 (6)0.02949 (19)
O20.30184 (8)0.28005 (8)0.68067 (6)0.0309 (2)
C30.12748 (12)0.37348 (12)0.39205 (10)0.0361 (3)
C10.25087 (15)0.54386 (11)0.52559 (9)0.0360 (3)
C20.37390 (13)0.50121 (11)0.33118 (9)0.0363 (3)
H10.4749 (17)0.2314 (14)0.3820 (13)0.049 (4)*
H30.3357 (17)0.2929 (13)0.6272 (13)0.044 (4)*
H1A0.1928 (16)0.6023 (14)0.4936 (12)0.049 (4)*
H3A0.0705 (17)0.4349 (13)0.3682 (13)0.049 (4)*
H20.5911 (19)0.2011 (13)0.3261 (11)0.048 (4)*
H3B0.0772 (19)0.3342 (15)0.4489 (14)0.062 (5)*
H40.3659 (17)0.2931 (12)0.7231 (12)0.042 (4)*
H2A0.3129 (17)0.5592 (14)0.3018 (13)0.050 (4)*
H3C0.148 (2)0.3195 (15)0.3342 (15)0.068 (5)*
H2B0.395 (2)0.4400 (15)0.2808 (14)0.063 (5)*
H1C0.2035 (16)0.5079 (16)0.5804 (12)0.055 (5)*
H2C0.457 (2)0.5422 (15)0.3541 (14)0.066 (5)*
H1B0.337 (2)0.5830 (16)0.5464 (14)0.067 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.01726 (15)0.02106 (16)0.01790 (16)0.00154 (8)0.00075 (7)0.00121 (8)
O30.0247 (3)0.0246 (3)0.0206 (3)0.0062 (3)0.0018 (2)0.0022 (3)
O10.0265 (4)0.0370 (4)0.0249 (4)0.0048 (3)0.0004 (3)0.0075 (3)
O20.0240 (4)0.0472 (5)0.0214 (4)0.0027 (3)0.0013 (3)0.0014 (3)
C30.0252 (5)0.0464 (7)0.0366 (6)0.0071 (5)0.0062 (5)0.0026 (5)
C10.0422 (7)0.0322 (5)0.0336 (6)0.0156 (5)0.0049 (6)0.0071 (5)
C20.0336 (6)0.0393 (6)0.0359 (6)0.0022 (5)0.0068 (5)0.0174 (5)
Geometric parameters (Å, º) top
P1—O31.5067 (7)C3—H3B0.993 (18)
P1—C31.7819 (11)C3—H3C1.001 (19)
P1—C11.7805 (12)C1—H1A0.957 (17)
P1—C21.7809 (11)C1—H1C0.943 (17)
O1—H10.807 (17)C1—H1B0.96 (2)
O1—H20.873 (18)C2—H2A0.955 (17)
O2—H30.789 (18)C2—H2B0.985 (18)
O2—H40.834 (17)C2—H2C0.958 (19)
C3—H3A0.934 (16)
O3—P1—C3112.58 (5)H3B—C3—H3C113.3 (13)
O3—P1—C1112.02 (5)P1—C1—H1A109.6 (10)
O3—P1—C2112.13 (5)P1—C1—H1C107.3 (11)
C1—P1—C3107.18 (7)P1—C1—H1B109.7 (11)
C1—P1—C2106.85 (7)H1A—C1—H1C112.1 (13)
C2—P1—C3105.64 (6)H1A—C1—H1B106.2 (14)
H1—O1—H2107.7 (14)H1C—C1—H1B112.0 (15)
H3—O2—H4106.5 (15)P1—C2—H2A112.1 (10)
P1—C3—H3A109.3 (9)P1—C2—H2B107.6 (10)
P1—C3—H3B108.8 (10)P1—C2—H2C108.3 (11)
P1—C3—H3C108.3 (11)H2A—C2—H2B109.5 (14)
H3A—C3—H3B108.9 (14)H2A—C2—H2C106.1 (13)
H3A—C3—H3C108.2 (14)H2B—C2—H2C113.3 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.807 (17)1.976 (18)2.7787 (10)173.2 (16)
O2—H3···O30.789 (18)2.046 (18)2.8261 (11)169.7 (15)
O1—H2···O2i0.873 (18)1.981 (18)2.8460 (12)170.6 (14)
O2—H4···O1ii0.834 (17)1.993 (17)2.8218 (11)172.0 (14)
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y+1/2, z+1/2.
 

Footnotes

Current address: Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.

Acknowledgements

We thank the EN-FIST Center of Excellence, Ljubljana, Slovenia, for access to a single-crystal X-ray diffractometer.

Funding information

Funding for this research was provided by: Slovenian Research Agency (grant No. P1-0230; grant No. N1-0189).

References

First citationAhn, S. H., Cluff, K. J., Bhuvanesh, N. & Blümel, J. (2015). Angew. Chem. Int. Ed. 54, 13341–13345.  Web of Science CSD CrossRef CAS Google Scholar
First citationArp, F. F., Bhuvanesh, N. & Blümel, J. (2019). Dalton Trans. 48, 14312–14325.  CSD CrossRef CAS PubMed Google Scholar
First citationBaures, P. W. (1991). Acta Cryst. C47, 2715–2716.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBaures, P. W. & Silverton, J. V. (1990). Acta Cryst. C46, 715–717.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBegimova, G., Tupikina, E. Yu., Yu, V. K., Denisov, G. S., Bodensteiner, M. & Shenderovich, I. G. (2016). J. Phys. Chem. C, 120, 8717–8729.  CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChaloner, P. A., Harrison, R. M. & Hitchcock, P. B. (1993). Acta Cryst. C49, 1072–1075.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationChurchill, M. R., See, R. F., Randall, S. L. & Atwood, J. D. (1993). Acta Cryst. C49, 345–347.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationCooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDunbar, K. R. & Haefner, S. C. (1994). Polyhedron, 13, 727–736.  CSD CrossRef CAS Web of Science Google Scholar
First citationEngelhardt, L. M., Raston, C. L., Whitaker, C. R. & White, A. H. (1986). Aust. J. Chem. 39, 2151–2154.  CSD CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationHilliard, C. R., Kharel, S., Cluff, K. J., Bhuvanesh, N., Gladysz, J. A. & Blümel, J. (2014). Chem. Eur. J. 20, 17292–17295.  CSD CrossRef CAS PubMed Google Scholar
First citationLozinšek, M., Mercier, H. P. A. & Schrobilgen, G. J. (2021). Angew. Chem. Int. Ed. 60, 8149–8156.  Google Scholar
First citationNg, S. W. (2009). Acta Cryst. E65, o1431.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku OD (2023). CrysAlis PRO. Rigaku Corporation, Wrocław, Poland.  Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationThomas, S. D., Tizzard, G. J., Coles, S. J. & Owen, G. R. (2019). CSD Communication (CCDC 1970272). CCDC, Cambridge, England.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146