organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-(2,3-Di­meth­­oxy­phen­yl)-2,3-di­hydro-1H-benzo[f]chromen-1-one

crossmark logo

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dddklab@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 31 August 2022; accepted 5 September 2022; online 13 September 2022)

In the title compound, C21H18O4, the central pyran ring is in an envelope conformation and the dihedral angle between the benzene ring and naphthalene ring system is 88.31 (1)°. The meth­oxy groups at the ortho and meta positions of the benzene ring are tilted to the ring with C—C—O—C torsion angles of 105.9 (4) and 9.5 (5)°, respectively. In the crystal, pairwise C—H⋯O hydrogen bonds form R22(14) inversion dimers, which are linked by another pair of C—H⋯O hydrogen bonds to form [210] chains in the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Flavanones exhibit a wide range of biological properties, including anti­viral (Shi et al., 2022[Shi, S., Zheng, X., Suzuki, R., Li, Z., Shiota, T., Wang, J., Hirai-Yuki, A., Liu, Q., Muramatsu, M. & Song, S.-J. (2022). Eur. J. Med. Chem. 238, 114452.]), anti­fungal (Emami et al. 2013[Emami, S., Shojapour, S., Faramarzi, M., Samadi, N. & Irannejad, H. (2013). Eur. J. Med. Chem. 66, 480-488.]) and anti­cancer activities (Bailly, 2021[Bailly, C. (2021). Bioorg. Med. Chem. 32, 116001.]; Zhao et al., 2019[Zhao, L., Yuan, X., Wang, J., Feng, Y., Ji, F., Li, Z. & Bian, J. (2019). Bioorg. Med. Chem. 27, 677-685.]) as well as being used in the treatment of Alzheimer's disease (Jin et al., 2021[Jin, X., Guo, J.-L., Wang, L., Zhong, X., Yao, W.-F., Gao, H. & Liu, M.-Y. (2021). Eur. J. Med. Chem. 218, 113401.]). In continuation of our research into flavanone derivatives (Sung, 2020[Sung, J. (2020). IUCrData, 5, x201209.]), the title compound was synthesized and its crystal structure was determined.

The title compound, C21H18O4, was prepared in a two-step reaction. A Claisen–Schmidt condensation reaction between 2,3-dimeth­oxy-benzaldehyde and 2-hy­droxy-1-aceto­naphthone gave the corresponding benzochalcone, which was then used for an intra­molecular Michael addition reaction to provide the desired flavanone (Yong et al. 2014[Yong, Y., Shin, S. Y., Hwang, D., Ahn, S., Koh, D. & Lim, Y. (2014). J. Korean Soc. Appl. Biol. Chem. 57, 561-564.]). The mol­ecular structure of the title compound is shown in Fig. 1[link]. The central pyran ring (C1/C2/C3/O2/C12/C21) has an envelope conformation with atom C3 as the flap. C3 is a stereogenic centre: in the arbitrarily chosen asymmetric unit, C3 has an S configuration, but crystal symmetry generates a racemic mixture. The hydrogen atom H3 attached to C3 forms a trans diaxial conformation with atom H2B of the C2 methyl­ene group (H3—C3—C2—H2B = −179.1°) and a gauche conformation with the other H atom attached to C2 (H3—C3—C2—H2A = −60.8°). The meth­oxy group at the meta position of the benzene ring is twisted slightly from the ring [C9—C7—O4—C8 = 9.5 (5)°]. However, the meth­oxy group at the ortho position is significantly distorted from the benzene ring due to steric hindrance with the pyran ring [C4—C5—O3—C6 = 105.9 (4)°]. The C12–C21 naphthalene ring system (r.m.s. deviation = 0.036 Å) and benzene ring (C4/ C5/C7/ C11/C9/C10]; r.m.s. deviation = 0.003 Å) lie almost perpendicular to each other forming a dihedral angle of 88.31 (1)°. In the crystal, pairs of C18—H18⋯O1 hydrogen bonds form an inversion dimer with graph-set notation R22(14). The dimers are linked by another pair of C13—H13⋯O2 hydrogen bonds to form a [210] chain. (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.95 2.52 3.454 (4) 169
C18—H18⋯O1ii 0.95 2.52 3.452 (4) 166
Symmetry codes: (i) [-x, -y, -z]; (ii) [-x+2, -y+1, -z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of the title compound, showing the weak C—H⋯O hydrogen bonds forming R22(14) dimers as yellow lines. An additional pair of inter­molecular hydrogen bonds (blue lines) link the dimers to form a chain.

Synthesis and crystallization

A solution of 2-hy­droxy-1-aceto­naphthone (186 mg, 1 mmol) and 2,3-di­meth­oxy­benzaldehyde (166 mg, 1 mmol) was dissolved in ethanol (15 ml) and the temperature was adjusted to around 276–277 K in an ice bath. To the cooled reaction mixture was added 1.0 ml of 40% aqueous KOH solution, and the reaction mixture was stirred at room temperature for 24 h. This mixture was poured into iced water (50 ml) acidified with 6 N HCl solution. The mixture was extracted with ethyl acetate (3 × 30 ml) and the combined organic layers were dried under MgSO4. Filtration and evaporation of the filtrate gave a solid chalcone, which was dissolved in DMSO and a catalytic amount of conc. HCl was added. After 10 h, the reaction mixture was poured into iced water to give a solid flavanone. Recrystallization from ethanol solution gave the crystals used in this X-ray diffraction study.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C21H18O4
Mr 334.35
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 200
a, b, c (Å) 8.3312 (14), 9.6506 (16), 11.797 (2)
α, β, γ (°) 94.261 (4), 107.335 (4), 112.326 (3)
V3) 818.4 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.34 × 0.21 × 0.16
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.969, 0.985
No. of measured, independent and observed [I > 2σ(I)] reflections 5181, 3202, 2136
Rint 0.020
(sin θ/λ)max−1) 0.618
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.204, 1.13
No. of reflections 3202
No. of parameters 228
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.30, −0.38
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) , SHELXL2014 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

3-(2,3-Dimethoxyphenyl)-2,3-dihydro-1H-benzo[f]chromen-1-one top
Crystal data top
C21H18O4Z = 2
Mr = 334.35F(000) = 352
Triclinic, P1Dx = 1.357 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3312 (14) ÅCell parameters from 2013 reflections
b = 9.6506 (16) Åθ = 2.7–25.9°
c = 11.797 (2) ŵ = 0.09 mm1
α = 94.261 (4)°T = 200 K
β = 107.335 (4)°Block, yellow
γ = 112.326 (3)°0.34 × 0.21 × 0.16 mm
V = 818.4 (2) Å3
Data collection top
Bruker SMART CCD
diffractometer
3202 independent reflections
Radiation source: fine-focus sealed tube2136 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω scansθmax = 26.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 109
Tmin = 0.969, Tmax = 0.985k = 1111
5181 measured reflectionsl = 1413
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0727P)2 + 0.8943P]
where P = (Fo2 + 2Fc2)/3
3202 reflections(Δ/σ)max < 0.001
228 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.38 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5916 (4)0.4265 (4)0.1200 (3)0.0387 (7)
O10.7393 (3)0.5280 (3)0.1255 (2)0.0534 (7)
C20.4897 (5)0.4555 (4)0.1987 (3)0.0467 (8)
H2A0.58040.52150.27820.056*
H2B0.41620.51010.15940.056*
C30.3641 (4)0.3088 (4)0.2179 (3)0.0404 (8)
H30.44190.25690.25880.048*
O20.2359 (3)0.2101 (2)0.10246 (19)0.0406 (6)
C40.2501 (4)0.3214 (4)0.2935 (3)0.0387 (7)
C50.2559 (4)0.2556 (3)0.3936 (3)0.0368 (7)
O30.3634 (3)0.1743 (3)0.4229 (2)0.0470 (6)
C60.5292 (5)0.2525 (5)0.5253 (4)0.0649 (11)
H6A0.60150.35300.51210.097*
H6B0.60250.19230.53640.097*
H6C0.49830.26640.59790.097*
C70.1468 (4)0.2610 (4)0.4626 (3)0.0396 (7)
O40.1617 (3)0.1893 (3)0.5578 (2)0.0501 (6)
C80.0315 (5)0.1696 (5)0.6180 (4)0.0558 (10)
H8A0.04630.27020.65460.084*
H8B0.05370.11220.68160.084*
H8C0.09470.11280.55900.084*
C90.0321 (5)0.3356 (4)0.4296 (3)0.0443 (8)
H90.04290.34030.47530.053*
C100.0275 (5)0.4029 (4)0.3300 (3)0.0474 (8)
H100.05010.45490.30830.057*
C110.1337 (5)0.3958 (4)0.2616 (3)0.0452 (8)
H110.12770.44160.19280.054*
C120.3185 (4)0.1820 (4)0.0248 (3)0.0366 (7)
C130.2063 (4)0.0489 (4)0.0672 (3)0.0425 (8)
H130.08180.01040.07400.051*
C140.2764 (5)0.0057 (4)0.1459 (3)0.0427 (8)
H140.19970.08380.20830.051*
C150.4630 (4)0.0918 (4)0.1370 (3)0.0378 (7)
C160.5352 (5)0.0391 (4)0.2161 (3)0.0428 (8)
H160.45710.05100.27780.051*
C170.7169 (5)0.1166 (4)0.2048 (3)0.0482 (9)
H170.76530.08000.25770.058*
C180.8306 (5)0.2500 (4)0.1150 (3)0.0474 (9)
H180.95720.30270.10650.057*
C190.7633 (5)0.3060 (4)0.0389 (3)0.0438 (8)
H190.84270.39850.02000.053*
C200.5757 (4)0.2274 (4)0.0469 (3)0.0366 (7)
C210.4989 (4)0.2770 (3)0.0347 (3)0.0364 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0354 (17)0.0354 (16)0.0444 (18)0.0114 (14)0.0171 (14)0.0101 (14)
O10.0415 (14)0.0415 (13)0.0690 (17)0.0044 (11)0.0286 (13)0.0005 (12)
C20.0425 (19)0.0418 (18)0.053 (2)0.0108 (15)0.0244 (16)0.0009 (16)
C30.0327 (16)0.0440 (18)0.0390 (17)0.0112 (14)0.0130 (14)0.0041 (14)
O20.0309 (11)0.0458 (12)0.0404 (12)0.0101 (10)0.0165 (10)0.0001 (10)
C40.0335 (16)0.0407 (17)0.0353 (17)0.0101 (14)0.0120 (14)0.0028 (14)
C50.0330 (16)0.0334 (16)0.0428 (18)0.0123 (13)0.0157 (14)0.0027 (14)
O30.0464 (14)0.0478 (13)0.0530 (14)0.0236 (11)0.0217 (12)0.0090 (11)
C60.048 (2)0.087 (3)0.055 (2)0.034 (2)0.0076 (19)0.006 (2)
C70.0399 (18)0.0389 (17)0.0393 (17)0.0124 (15)0.0198 (15)0.0042 (14)
O40.0556 (15)0.0598 (15)0.0489 (14)0.0277 (13)0.0312 (12)0.0186 (12)
C80.061 (2)0.061 (2)0.056 (2)0.023 (2)0.039 (2)0.0157 (19)
C90.0443 (19)0.0452 (18)0.0471 (19)0.0172 (16)0.0246 (16)0.0045 (15)
C100.0438 (19)0.050 (2)0.053 (2)0.0234 (17)0.0196 (17)0.0080 (17)
C110.0451 (19)0.0470 (19)0.0431 (19)0.0180 (16)0.0163 (16)0.0131 (15)
C120.0325 (16)0.0436 (17)0.0360 (17)0.0157 (14)0.0158 (14)0.0080 (14)
C130.0292 (16)0.0429 (18)0.0457 (19)0.0065 (14)0.0136 (14)0.0007 (15)
C140.0402 (18)0.0417 (18)0.0411 (18)0.0120 (15)0.0161 (15)0.0013 (14)
C150.0361 (17)0.0385 (17)0.0371 (17)0.0141 (14)0.0127 (14)0.0084 (14)
C160.0433 (19)0.0439 (18)0.0452 (19)0.0190 (15)0.0208 (16)0.0074 (15)
C170.054 (2)0.050 (2)0.053 (2)0.0255 (18)0.0306 (18)0.0131 (17)
C180.0397 (18)0.050 (2)0.061 (2)0.0178 (16)0.0294 (17)0.0189 (17)
C190.0370 (18)0.0438 (18)0.051 (2)0.0136 (15)0.0213 (16)0.0105 (15)
C200.0343 (16)0.0380 (16)0.0404 (17)0.0147 (14)0.0165 (14)0.0135 (14)
C210.0315 (16)0.0371 (16)0.0396 (17)0.0120 (13)0.0143 (14)0.0080 (14)
Geometric parameters (Å, º) top
C1—O11.227 (4)C8—H8C0.9800
C1—C211.471 (4)C9—C101.381 (5)
C1—C21.507 (4)C9—H90.9500
C2—C31.488 (5)C10—C111.379 (5)
C2—H2A0.9900C10—H100.9500
C2—H2B0.9900C11—H110.9500
C3—O21.439 (4)C12—C211.394 (4)
C3—C41.513 (4)C12—C131.406 (4)
C3—H31.0000C13—C141.352 (4)
O2—C121.366 (3)C13—H130.9500
C4—C51.379 (4)C14—C151.423 (4)
C4—C111.396 (5)C14—H140.9500
C5—O31.389 (4)C15—C201.410 (4)
C5—C71.400 (4)C15—C161.410 (4)
O3—C61.419 (4)C16—C171.369 (5)
C6—H6A0.9800C16—H160.9500
C6—H6B0.9800C17—C181.396 (5)
C6—H6C0.9800C17—H170.9500
C7—O41.362 (4)C18—C191.367 (5)
C7—C91.388 (5)C18—H180.9500
O4—C81.428 (4)C19—C201.424 (4)
C8—H8A0.9800C19—H190.9500
C8—H8B0.9800C20—C211.449 (4)
O1—C1—C21123.8 (3)C10—C9—C7119.7 (3)
O1—C1—C2119.8 (3)C10—C9—H9120.1
C21—C1—C2116.4 (3)C7—C9—H9120.1
C3—C2—C1110.8 (3)C11—C10—C9121.1 (3)
C3—C2—H2A109.5C11—C10—H10119.5
C1—C2—H2A109.5C9—C10—H10119.5
C3—C2—H2B109.5C10—C11—C4120.0 (3)
C1—C2—H2B109.5C10—C11—H11120.0
H2A—C2—H2B108.1C4—C11—H11120.0
O2—C3—C2109.8 (3)O2—C12—C21123.3 (3)
O2—C3—C4107.0 (2)O2—C12—C13114.5 (3)
C2—C3—C4116.2 (3)C21—C12—C13122.3 (3)
O2—C3—H3107.8C14—C13—C12119.7 (3)
C2—C3—H3107.8C14—C13—H13120.2
C4—C3—H3107.8C12—C13—H13120.2
C12—O2—C3114.2 (2)C13—C14—C15121.3 (3)
C5—C4—C11118.8 (3)C13—C14—H14119.4
C5—C4—C3120.3 (3)C15—C14—H14119.4
C11—C4—C3120.9 (3)C20—C15—C16120.5 (3)
C4—C5—O3119.6 (3)C20—C15—C14119.6 (3)
C4—C5—C7121.4 (3)C16—C15—C14119.9 (3)
O3—C5—C7118.9 (3)C17—C16—C15120.6 (3)
C5—O3—C6114.0 (3)C17—C16—H16119.7
O3—C6—H6A109.5C15—C16—H16119.7
O3—C6—H6B109.5C16—C17—C18119.5 (3)
H6A—C6—H6B109.5C16—C17—H17120.2
O3—C6—H6C109.5C18—C17—H17120.2
H6A—C6—H6C109.5C19—C18—C17121.2 (3)
H6B—C6—H6C109.5C19—C18—H18119.4
O4—C7—C9125.0 (3)C17—C18—H18119.4
O4—C7—C5116.0 (3)C18—C19—C20120.8 (3)
C9—C7—C5119.0 (3)C18—C19—H19119.6
C7—O4—C8117.8 (3)C20—C19—H19119.6
O4—C8—H8A109.5C15—C20—C19117.4 (3)
O4—C8—H8B109.5C15—C20—C21119.2 (3)
H8A—C8—H8B109.5C19—C20—C21123.4 (3)
O4—C8—H8C109.5C12—C21—C20117.7 (3)
H8A—C8—H8C109.5C12—C21—C1117.6 (3)
H8B—C8—H8C109.5C20—C21—C1124.5 (3)
O1—C1—C2—C3156.5 (3)C3—O2—C12—C13158.7 (3)
C21—C1—C2—C326.8 (4)O2—C12—C13—C14176.9 (3)
C1—C2—C3—O257.2 (4)C21—C12—C13—C143.3 (5)
C1—C2—C3—C4178.8 (3)C12—C13—C14—C150.6 (5)
C2—C3—O2—C1255.5 (3)C13—C14—C15—C202.0 (5)
C4—C3—O2—C12177.5 (3)C13—C14—C15—C16176.4 (3)
O2—C3—C4—C5111.0 (3)C20—C15—C16—C171.6 (5)
C2—C3—C4—C5125.9 (3)C14—C15—C16—C17176.8 (3)
O2—C3—C4—C1167.2 (4)C15—C16—C17—C180.8 (5)
C2—C3—C4—C1155.9 (4)C16—C17—C18—C190.9 (5)
C11—C4—C5—O3176.6 (3)C17—C18—C19—C201.7 (5)
C3—C4—C5—O31.6 (4)C16—C15—C20—C190.8 (5)
C11—C4—C5—C70.5 (5)C14—C15—C20—C19177.6 (3)
C3—C4—C5—C7177.7 (3)C16—C15—C20—C21178.7 (3)
C4—C5—O3—C6105.9 (4)C14—C15—C20—C210.3 (5)
C7—C5—O3—C677.9 (4)C18—C19—C20—C150.9 (5)
C4—C5—C7—O4178.7 (3)C18—C19—C20—C21177.0 (3)
O3—C5—C7—O42.6 (4)O2—C12—C21—C20174.8 (3)
C4—C5—C7—C90.6 (5)C13—C12—C21—C205.5 (5)
O3—C5—C7—C9176.7 (3)O2—C12—C21—C110.3 (5)
C9—C7—O4—C89.5 (5)C13—C12—C21—C1169.4 (3)
C5—C7—O4—C8169.8 (3)C15—C20—C21—C123.9 (4)
O4—C7—C9—C10179.3 (3)C19—C20—C21—C12173.9 (3)
C5—C7—C9—C100.0 (5)C15—C20—C21—C1170.6 (3)
C7—C9—C10—C110.7 (5)C19—C20—C21—C111.6 (5)
C9—C10—C11—C40.8 (5)O1—C1—C21—C12170.1 (3)
C5—C4—C11—C100.2 (5)C2—C1—C21—C126.4 (4)
C3—C4—C11—C10178.4 (3)O1—C1—C21—C204.4 (5)
C3—O2—C12—C2121.5 (4)C2—C1—C21—C20179.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O2i0.952.523.454 (4)169
C18—H18···O1ii0.952.523.452 (4)166
Symmetry codes: (i) x, y, z; (ii) x+2, y+1, z.
 

Funding information

This work was supported by a Dongduk Women's University grant.

References

First citationBailly, C. (2021). Bioorg. Med. Chem. 32, 116001.  Web of Science CrossRef PubMed Google Scholar
First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEmami, S., Shojapour, S., Faramarzi, M., Samadi, N. & Irannejad, H. (2013). Eur. J. Med. Chem. 66, 480–488.  Web of Science CrossRef CAS PubMed Google Scholar
First citationJin, X., Guo, J.-L., Wang, L., Zhong, X., Yao, W.-F., Gao, H. & Liu, M.-Y. (2021). Eur. J. Med. Chem. 218, 113401.  Web of Science CrossRef PubMed Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShi, S., Zheng, X., Suzuki, R., Li, Z., Shiota, T., Wang, J., Hirai-Yuki, A., Liu, Q., Muramatsu, M. & Song, S.-J. (2022). Eur. J. Med. Chem. 238, 114452.  Web of Science CrossRef PubMed Google Scholar
First citationSung, J. (2020). IUCrData, 5, x201209.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYong, Y., Shin, S. Y., Hwang, D., Ahn, S., Koh, D. & Lim, Y. (2014). J. Korean Soc. Appl. Biol. Chem. 57, 561–564.  Web of Science CrossRef CAS Google Scholar
First citationZhao, L., Yuan, X., Wang, J., Feng, Y., Ji, F., Li, Z. & Bian, J. (2019). Bioorg. Med. Chem. 27, 677–685.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds