organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Ethyl 10-cyano-7-hy­dr­oxy-6-oxo-3-phenyl-8,9,10,10a-tetra­hydro-6H-benzo[c]chromene-10-carboxyl­ate

crossmark logo

aDepartment of Chemistry, Pondicherry University, Puducherry 605014, India, bVasista Pharma Chem Pvt Ltd, Gajularamaram, Hyderabad 500090, India, and cDepartment of Biotechnology, School of Engineering and Technology, Sharda, University, Greater Noida 201306, India
*Correspondence e-mail: profhspr@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 7 February 2022; accepted 19 February 2022; online 25 February 2022)

In the title compound, C23H19NO5, the cyano group adopts an axial orientation and the ester group an equatorial orientation. The dihedral angle between the pendant phenyl group and the benzene ring of the fused-ring system is 25.97 (8)°. Intra­molecular O—H⋯O and C—H⋯O hydrogen bonds are observed and the packing is consolidated by C—H⋯O and C—H⋯π inter­actions.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Dibenzo­pyran-6-ones (also called 6H-benzo[c]chromen-6-ones or 3,4,5,6-dibenzo-α-pyran­ones) form an important group of biologically active natural products that occur in bacteria, fungi, lichens, higher plants and animal waste (Bialonska et al., 2009[Bialonska, D., Kasimsetty, S. G., Khan, S. I. & Ferreira, D. (2009). J. Agric. Food Chem. 57, 10181-10186.]). Elsamitrucin, a dibenzo­pyran-6-one derived drug, is an efficient topoisomerase II inhibitor (Fiocchi et al., 2011[Fiocchi, S. C., Selting, K. A., Rosenberg, M. P., Kolli, P., Lenaz, G. & Henry, C. (2011). J. Vet. Int. Med. 25, 897-902.]). As well as their biological activities, some dibenzo­pyran-6-ones have served as inter­mediates in the synthesis of more complex organic compounds (see, for example, Coghlan et al., 2001[Coghlan, M. J., Kym, P. R., Elmore, S. W., Wang, A. X., Luly, J. R., Wilcox, D., Stashko, M., Lin, C. W., Miner, J., Tyree, C., Nakane, M., Jacobson, P. & Lane, B. C. (2001). J. Med. Chem. 44, 2879-2885.]). As a part of our ongoing studies in this area, we now describe the synthesis and crystal structure of the title compound.

The title compound has a dibenzo­pyran moiety decorated by several substituents, as shown in Fig. 1[link]. There are two stereogenic centres: in the arbitrarily chosen asymmetric mol­ecule, C15 and C20 have S and R configurations, respectively, but crystal symmetry generates a racemic mixture. The nitrile group attached to C20 occupies an axial position and is anti to the hydrogen atom attached to C19. The dihedral angle between the pendant C1–C6 phenyl group and the C7–C12 benzene ring of the fused-ring system is 25.97 (8)°. The Cremer–Pople puckering parameters of the O1/C9/C10/C13–C15 and C14/C15/C17–C20 rings indicate half-chair conformations in each case with puckering amplitudes Q = 0.359 Å; θ = 104.52°; φ = 9.27° and Q = 0.49 Å; θ = 134.17°; φ = 327.35°, respectively. The O atom attached to C17 is stabilized in its enol (hy­droxy) form, presumably as a result of forming a strong intra­molecular hydrogen bond to O2. The packing is consolidated by weak C—H⋯O hydrogen bonds and C—H⋯π inter­actions (Table 1[link]) and an intra­molecular C—H⋯O inter­action is also observed (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C1–C6 and C7–C12 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.82 1.86 2.5702 (16) 145
C11—H11⋯O4 0.93 2.54 3.399 (2) 154
C18—H18B⋯O1i 0.97 2.60 3.4289 (19) 144
C19—H19B⋯O2i 0.97 2.60 3.285 (2) 128
C15—H15⋯Cg2ii 0.98 2.95 3.7685 (17) 142
C23—H23BCg3iii 0.96 2.82 3.686 (3) 151
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, -y, -z+2]; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. Intra­molecular hydrogen bonds are shown as dashed lines.
[Figure 2]
Figure 2
Inter­molecular inter­actions in the title compound.

From a Cambridge Structural Database search (Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), we found compounds identified by refcodes OKEYUB (Xiao et al., 2021[Xiao, Y., Zhou, L., Hao, H., Bao, Y., Yin, Q. & Xie, C. (2021). Cryst. Growth Des. 21, 1202-1217.]), QABVEY (Wang et al., 2021[Wang, B., Constantin, M., Singh, S., Zhou, Y., Davis, R. L. & West, F. G. (2021). Org. Biomol. Chem. 19, 399-405.]), ALTENU (McPhail et al., 1973[McPhail, A. T., Miller, R. W., Harvan, D. & Pero, R. W. (1973). J. Chem. Soc. Chem. Commun. p. 682.]), AMUYIS (Alzaydi et al., 2016[Alzaydi, K. M., Abojabal, N. S. & Elnagdi, M. H. (2016). Tetrahedron Lett. 57, 3596-3599.]), ANOVEG (Sosnovskikh et al., 2016[Sosnovskikh, V. Y., Korotaev, V. Y., Kutyashev, I. B., Barkov, A. Y. & Safrygin, A. V. (2016). RSC Adv. 6, 58188-58202.]), ANOVIK (Sosnovskikh et al., 2016[Sosnovskikh, V. Y., Korotaev, V. Y., Kutyashev, I. B., Barkov, A. Y. & Safrygin, A. V. (2016). RSC Adv. 6, 58188-58202.]), BUWJEK (Parveen et al., 2015[Parveen, M., Malla, A. M., Ali, A., Nami, S. A. A., Silva, P. S. P. & Silva, M. R. (2015). Chem. Nat. Compd. 51, 62-66.]), BUXLOW (Fatunsin et al., 2010[Fatunsin, O., Iaroshenko, V. O., Dudkin, S., Mkrtchyan, S., Villinger, A. & Langer, P. (2010). Tetrahedron Lett. 51, 4693-4695.]), DIPTUR (Casiraghi et al., 1986[Casiraghi, G., Cornia, M., Casnati, G., Fava, G. G. & Belicchi, M. F. (1986). J. Chem. Soc. Chem. Commun. pp. 271-273.]), DISJAS (Lee et al., 2013[Lee, T., Jayakumar, J., Cheng, C. & Chuang, S. (2013). Chem. Commun. 49, 11797.]), SEDFEN (Appel et al., 2006[Appel, B., Saleh, N. N. R. & Langer, P. (2006). Chem. Eur. J. 12, 1221-1236.]), SIVQIZ (Poudel & Lee, 2014[Poudel, T. N. & Lee, Y. R. (2014). Org. Biomol. Chem. 12, 919-930.]), SIJZER (Hussain et al., 2007[Hussain, I., Nguyen, V. T. H., Yawer, M. A., Dang, T. T., Fischer, C., Reinke, H. & Langer, P. (2007). J. Org. Chem. 72, 6255-6258.]), TUPJOE (Siegel et al., 2010[Siegel, D., Troyanov, S., Noack, J., Emmerling, F. & Nehls, I. (2010). Acta Cryst. E66, o1366.]), ZAQHIK (Dasari et al., 2012[Dasari, S., Bhadbhade, M. & Neilan, B. A. (2012). Acta Cryst. E68, o1471.]) and IZACIY (Duan et al., 2021[Duan, J., He, X., Choy, P. Y., Wang, Q., Xie, M., Li, R., Xu, K., Shang, Y. & Kwong, F. Y. (2021). Org. Lett. 23, 6455-6460.]) to be similar to the title compound.

Synthesis and crystallization

A mixture of ethyl 10-cyano-7-hy­droxy-6-oxo-3-{[(tri­fluoro­meth­yl)sulfon­yl]­oxy}-8,9,10,10a-tetra­hydro-6H-benzo[c]chromene-10-carboxyl­ate (100 mg, 0.22 mmol), phenyl­boronic acid (34 mg, 0.28 mmol, 1.3 equiv.), K3PO4 (73 mg, 0.34 mmol, 1.6 equiv.) and Pd(PPh3)4 (3 mg, 3 mol%) in degassed 1,4-dioxane (10 mL) was stirred at 100° C for 12 h under nitro­gen. After completion of the coupling reaction (TLC), the mixture was cooled to room temperature, diluted with di­chloro­methane (DCM, 10 mL) and deca­nted. The residue was extracted with DCM (10 mL × 2) twice. The solvent was removed from the combined DCM layers and the residue was subjected to column chromatography on silica gel (100–200 mesh) by using increasing amounts of ethyl acetate in hexane (5% to 15%) as eluent to afford the title compound as a light-yellow solid in 90% yield (84 mg); Rf = 0.4 (hexa­nes:ethyl acetate, 7:3); m.p. 155–158° C. A sample suitable for single-crystal X-ray analysis was obtained by recrystallization the 50 mg of the solid from a mixture of 1 mL of distilled chloro­form and 0.5 mL of distilled methanol.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C23H19NO5
Mr 389.39
Crystal system, space group Monoclinic, P21/n
Temperature (K) 293
a, b, c (Å) 9.7089 (8), 14.3510 (12), 14.2749 (15)
β (°) 106.946 (10)
V3) 1902.6 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.75 × 0.44 × 0.42
 
Data collection
Diffractometer Xcalibur, Eos
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.932, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 10689, 4413, 3119
Rint 0.026
(sin θ/λ)max−1) 0.686
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.157, 0.95
No. of reflections 4413
No. of parameters 264
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.19, −0.20
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2020) and Mercury (Macrae et al., 2020); software used to prepare material for publication: ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2020) and Mercury (Macrae et al., 2020).

Ethyl 10-cyano-7-hydroxy-6-oxo-3-phenyl-8,9,10,10a-tetrahydro-6H-benzo[c]chromene-10-carboxylate top
Crystal data top
C23H19NO5F(000) = 816
Mr = 389.39Dx = 1.359 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.7089 (8) ÅCell parameters from 2883 reflections
b = 14.3510 (12) Åθ = 3.0–29.1°
c = 14.2749 (15) ŵ = 0.10 mm1
β = 106.946 (10)°T = 293 K
V = 1902.6 (3) Å3Block, colorless
Z = 40.75 × 0.44 × 0.42 mm
Data collection top
Xcalibur, Eos
diffractometer
4413 independent reflections
Radiation source: Enhance (Mo) X-ray Source3119 reflections with I > 2σ(I)
Detector resolution: 15.9821 pixels mm-1Rint = 0.026
ω scansθmax = 29.2°, θmin = 3.0°
Absorption correction: multi-scan
(CrysalisPro; Agilent, 2014)
h = 1313
Tmin = 0.932, Tmax = 1.000k = 1817
10689 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: iterative
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
4413 reflections(Δ/σ)max = 0.010
264 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The hydrogen atoms in title compound were placed in calculated positions, with C—H = 0.93–0.97 A° and refined using a riding model with Uiso(H) = 1.2 Ueq(C) or 1.5Ueq(C-methyl).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.53859 (10)0.16733 (8)0.92065 (7)0.0410 (3)
O20.63028 (12)0.27465 (8)0.84841 (8)0.0509 (3)
C140.44382 (14)0.18379 (10)0.74486 (11)0.0347 (3)
O50.27716 (13)0.06937 (8)0.61784 (10)0.0595 (4)
C150.36436 (14)0.09212 (10)0.73953 (10)0.0332 (3)
H150.4315140.0428890.7340170.040*
O30.50815 (13)0.31695 (9)0.66833 (9)0.0588 (4)
H30.5619320.3252240.7237810.088*
C90.42029 (14)0.11197 (10)0.92053 (11)0.0337 (3)
C100.32907 (15)0.07558 (10)0.83485 (11)0.0347 (3)
C70.29134 (15)0.04148 (11)1.02203 (11)0.0366 (4)
C40.27309 (15)0.02080 (11)1.11980 (11)0.0382 (4)
C190.28311 (17)0.11903 (13)0.55664 (11)0.0447 (4)
H19A0.3608870.0792140.5507480.054*
H19B0.2037790.1126520.4971790.054*
C160.11816 (17)0.14945 (12)0.65498 (12)0.0450 (4)
C130.54193 (15)0.21194 (11)0.83729 (11)0.0375 (4)
C200.23367 (15)0.08697 (11)0.64512 (11)0.0377 (4)
C80.40422 (15)0.09584 (10)1.01183 (11)0.0366 (4)
H80.4693690.1215271.0669500.044*
C210.17320 (17)0.01170 (12)0.62229 (11)0.0437 (4)
O40.05006 (13)0.03278 (10)0.60776 (10)0.0649 (4)
C120.19570 (17)0.00624 (12)0.93635 (12)0.0443 (4)
H120.1173310.0290360.9405060.053*
C180.33369 (17)0.21905 (12)0.56740 (12)0.0467 (4)
H18A0.3818000.2325590.5181700.056*
H18B0.2507520.2598560.5557660.056*
C170.43402 (16)0.23902 (11)0.66616 (12)0.0410 (4)
C110.21487 (17)0.02259 (12)0.84563 (12)0.0443 (4)
H110.1495690.0025490.7902530.053*
C60.20395 (18)0.05906 (13)1.13558 (13)0.0507 (4)
H60.1665170.0996571.0836000.061*
C30.32765 (18)0.08032 (12)1.19927 (12)0.0466 (4)
H3A0.3750260.1347131.1912180.056*
C20.2424 (2)0.02057 (16)1.30377 (15)0.0627 (5)
H20.2316010.0341541.3649350.075*
C10.1887 (2)0.08045 (15)1.22642 (15)0.0637 (5)
H10.1424420.1350501.2352430.076*
C50.3116 (2)0.05875 (15)1.29030 (14)0.0579 (5)
H50.3484120.0989161.3427560.070*
C220.2376 (2)0.16616 (14)0.59282 (18)0.0714 (6)
H22A0.1505690.1690840.5381500.086*
H22B0.2200300.1978770.6482260.086*
C230.3565 (3)0.21069 (18)0.5666 (2)0.1099 (10)
H23A0.3726050.1791330.5114510.165*
H23B0.3330400.2747430.5500710.165*
H23C0.4421230.2074560.6211700.165*
N10.03398 (17)0.20167 (13)0.66178 (13)0.0658 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0360 (5)0.0501 (7)0.0321 (6)0.0093 (5)0.0023 (4)0.0025 (5)
O20.0501 (7)0.0508 (7)0.0448 (7)0.0184 (6)0.0029 (5)0.0017 (5)
C140.0322 (7)0.0351 (8)0.0334 (8)0.0002 (6)0.0042 (6)0.0018 (6)
O50.0520 (7)0.0435 (7)0.0799 (10)0.0124 (6)0.0143 (6)0.0140 (6)
C150.0313 (7)0.0349 (8)0.0296 (8)0.0014 (6)0.0027 (6)0.0016 (6)
O30.0606 (8)0.0537 (8)0.0516 (8)0.0181 (6)0.0003 (6)0.0162 (6)
C90.0306 (7)0.0323 (8)0.0347 (8)0.0019 (6)0.0041 (6)0.0024 (6)
C100.0364 (7)0.0323 (8)0.0318 (8)0.0017 (6)0.0040 (6)0.0029 (6)
C70.0385 (7)0.0357 (8)0.0338 (9)0.0056 (6)0.0078 (6)0.0026 (6)
C40.0365 (7)0.0410 (9)0.0375 (9)0.0092 (6)0.0115 (6)0.0034 (7)
C190.0431 (8)0.0569 (11)0.0311 (9)0.0059 (8)0.0060 (6)0.0023 (7)
C160.0375 (8)0.0543 (10)0.0396 (10)0.0015 (8)0.0056 (6)0.0104 (8)
C130.0334 (7)0.0373 (8)0.0383 (9)0.0003 (6)0.0051 (6)0.0039 (7)
C200.0341 (7)0.0448 (9)0.0307 (8)0.0029 (6)0.0039 (6)0.0012 (7)
C80.0379 (7)0.0349 (8)0.0324 (8)0.0026 (6)0.0028 (6)0.0005 (6)
C210.0431 (9)0.0534 (10)0.0307 (9)0.0102 (8)0.0049 (6)0.0038 (7)
O40.0483 (7)0.0789 (10)0.0652 (9)0.0248 (7)0.0132 (6)0.0154 (7)
C120.0437 (8)0.0481 (10)0.0389 (9)0.0103 (7)0.0086 (7)0.0044 (7)
C180.0430 (9)0.0564 (11)0.0361 (9)0.0032 (7)0.0045 (7)0.0121 (8)
C170.0377 (8)0.0423 (9)0.0399 (9)0.0027 (7)0.0064 (6)0.0052 (7)
C110.0444 (8)0.0481 (10)0.0344 (9)0.0110 (7)0.0022 (7)0.0010 (7)
C60.0548 (10)0.0529 (11)0.0485 (11)0.0025 (8)0.0214 (8)0.0004 (8)
C30.0476 (9)0.0504 (10)0.0426 (10)0.0034 (8)0.0144 (7)0.0021 (8)
C20.0683 (12)0.0819 (15)0.0468 (12)0.0071 (11)0.0307 (10)0.0081 (10)
C10.0711 (12)0.0699 (14)0.0602 (13)0.0059 (11)0.0348 (10)0.0087 (10)
C50.0591 (11)0.0746 (13)0.0424 (11)0.0072 (10)0.0185 (8)0.0082 (9)
C220.0747 (13)0.0481 (12)0.0924 (17)0.0228 (10)0.0258 (11)0.0196 (11)
C230.100 (2)0.0564 (15)0.188 (3)0.0203 (13)0.065 (2)0.0405 (17)
N10.0558 (9)0.0742 (11)0.0700 (12)0.0198 (9)0.0222 (8)0.0222 (9)
Geometric parameters (Å, º) top
O1—C131.3599 (18)C7—C41.487 (2)
O1—C91.3961 (17)C4—C61.379 (2)
O2—C131.2212 (18)C4—C31.395 (2)
C14—C171.355 (2)C19—C181.510 (2)
C14—C131.442 (2)C19—C201.546 (2)
C14—C151.516 (2)C16—N11.134 (2)
O5—C211.321 (2)C16—C201.474 (2)
O5—C221.457 (2)C20—C211.531 (2)
C15—C101.516 (2)C21—O41.1913 (18)
C15—C201.5604 (19)C12—C111.381 (2)
O3—C171.3255 (19)C18—C171.489 (2)
C9—C81.377 (2)C6—C11.382 (2)
C9—C101.386 (2)C3—C51.388 (2)
C10—C111.390 (2)C2—C51.363 (3)
C7—C81.387 (2)C2—C11.376 (3)
C7—C121.397 (2)C22—C231.460 (3)
C13—O1—C9119.76 (11)O1—C13—C14119.40 (13)
C17—C14—C13117.57 (14)C16—C20—C21109.13 (13)
C17—C14—C15123.65 (13)C16—C20—C19108.83 (12)
C13—C14—C15118.68 (13)C21—C20—C19107.00 (13)
C21—O5—C22117.30 (14)C16—C20—C15109.78 (13)
C14—C15—C10109.62 (12)C21—C20—C15113.11 (12)
C14—C15—C20111.00 (12)C19—C20—C15108.88 (12)
C10—C15—C20115.36 (12)C9—C8—C7120.33 (13)
C8—C9—C10123.53 (14)O4—C21—O5125.08 (16)
C8—C9—O1114.50 (12)O4—C21—C20125.09 (16)
C10—C9—O1121.96 (13)O5—C21—C20109.79 (13)
C9—C10—C11115.70 (14)C11—C12—C7121.50 (15)
C9—C10—C15118.66 (13)C17—C18—C19112.50 (13)
C11—C10—C15125.57 (13)O3—C17—C14124.59 (14)
C8—C7—C12117.11 (14)O3—C17—C18112.66 (13)
C8—C7—C4121.65 (13)C14—C17—C18122.73 (14)
C12—C7—C4121.25 (14)C12—C11—C10121.79 (14)
C6—C4—C3117.61 (15)C4—C6—C1121.87 (18)
C6—C4—C7121.05 (15)C5—C3—C4120.32 (17)
C3—C4—C7121.33 (15)C5—C2—C1119.68 (18)
C18—C19—C20111.65 (14)C2—C1—C6119.68 (19)
N1—C16—C20176.08 (18)C2—C5—C3120.84 (18)
O2—C13—O1115.36 (13)O5—C22—C23107.97 (17)
O2—C13—C14125.24 (14)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 and C7–C12 rings, respectively.
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.862.5702 (16)145
C11—H11···O40.932.543.399 (2)154
C18—H18B···O1i0.972.603.4289 (19)144
C19—H19B···O2i0.972.603.285 (2)128
C15—H15···Cg2ii0.982.953.7685 (17)142
C23—H23B···Cg3iii0.962.823.686 (3)151
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y, z+2; (iii) x+1/2, y1/2, z+3/2.
 

Acknowledgements

The authors thank the DST–FIST Single Crystal XRD facility at the Department of Chemistry, Pondicherry University, for the diffraction data and Dr Clara Gomes (FCT–UNL, Portugal) for the CSD database survey. MP thanks the Department of Chemistry for facilities. JM thanks Dr Amit Kumar Singh (Sharda University, India) for support.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAlzaydi, K. M., Abojabal, N. S. & Elnagdi, M. H. (2016). Tetrahedron Lett. 57, 3596–3599.  CrossRef CAS Google Scholar
First citationAppel, B., Saleh, N. N. R. & Langer, P. (2006). Chem. Eur. J. 12, 1221–1236.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBialonska, D., Kasimsetty, S. G., Khan, S. I. & Ferreira, D. (2009). J. Agric. Food Chem. 57, 10181–10186.  CrossRef PubMed CAS Google Scholar
First citationCasiraghi, G., Cornia, M., Casnati, G., Fava, G. G. & Belicchi, M. F. (1986). J. Chem. Soc. Chem. Commun. pp. 271–273.  CrossRef Google Scholar
First citationCoghlan, M. J., Kym, P. R., Elmore, S. W., Wang, A. X., Luly, J. R., Wilcox, D., Stashko, M., Lin, C. W., Miner, J., Tyree, C., Nakane, M., Jacobson, P. & Lane, B. C. (2001). J. Med. Chem. 44, 2879–2885.  CrossRef PubMed CAS Google Scholar
First citationDasari, S., Bhadbhade, M. & Neilan, B. A. (2012). Acta Cryst. E68, o1471.  CSD CrossRef IUCr Journals Google Scholar
First citationDuan, J., He, X., Choy, P. Y., Wang, Q., Xie, M., Li, R., Xu, K., Shang, Y. & Kwong, F. Y. (2021). Org. Lett. 23, 6455–6460.  CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFatunsin, O., Iaroshenko, V. O., Dudkin, S., Mkrtchyan, S., Villinger, A. & Langer, P. (2010). Tetrahedron Lett. 51, 4693–4695.  CrossRef CAS Google Scholar
First citationFiocchi, S. C., Selting, K. A., Rosenberg, M. P., Kolli, P., Lenaz, G. & Henry, C. (2011). J. Vet. Int. Med. 25, 897–902.  CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHussain, I., Nguyen, V. T. H., Yawer, M. A., Dang, T. T., Fischer, C., Reinke, H. & Langer, P. (2007). J. Org. Chem. 72, 6255–6258.  CrossRef PubMed CAS Google Scholar
First citationLee, T., Jayakumar, J., Cheng, C. & Chuang, S. (2013). Chem. Commun. 49, 11797.  CrossRef Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMcPhail, A. T., Miller, R. W., Harvan, D. & Pero, R. W. (1973). J. Chem. Soc. Chem. Commun. p. 682.  CrossRef Google Scholar
First citationParveen, M., Malla, A. M., Ali, A., Nami, S. A. A., Silva, P. S. P. & Silva, M. R. (2015). Chem. Nat. Compd. 51, 62–66.  CrossRef CAS Google Scholar
First citationPoudel, T. N. & Lee, Y. R. (2014). Org. Biomol. Chem. 12, 919–930.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSiegel, D., Troyanov, S., Noack, J., Emmerling, F. & Nehls, I. (2010). Acta Cryst. E66, o1366.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSosnovskikh, V. Y., Korotaev, V. Y., Kutyashev, I. B., Barkov, A. Y. & Safrygin, A. V. (2016). RSC Adv. 6, 58188–58202.  CrossRef CAS Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWang, B., Constantin, M., Singh, S., Zhou, Y., Davis, R. L. & West, F. G. (2021). Org. Biomol. Chem. 19, 399–405.  CrossRef CAS PubMed Google Scholar
First citationXiao, Y., Zhou, L., Hao, H., Bao, Y., Yin, Q. & Xie, C. (2021). Cryst. Growth Des. 21, 1202–1217.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds