organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,3-Thia­zole-4-carbo­nitrile

crossmark logo

aLeibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
*Correspondence e-mail: david.linke@catalysis.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 October 2021; accepted 15 December 2021; online 21 December 2021)

The title compound, C4H2N2S, is a 1,3-thia­zole substituted in the 4-position by a nitrile group. In the crystal, C—H⋯N hydrogen bonds and aromatic ππ stacking inter­actions are observed.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The title compound, C4H2N2S, consists of a 1,3-thia­zole ring substituted in the 4-position by a nitrile group (Fig. 1[link]). The whole mol­ecule is nearly planar with a mean deviation from the best plane defined by all non-hydrogen atoms of 0.005 Å. All bond lengths are in the expected ranges (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. II, S1-S19.]).

[Figure 1]
Figure 1
Mol­ecular structure of the title compound with atom labelling and displacement ellipsoids drawn at 50% probability level.

In the crystal, weak C—H⋯N hydrogen bonds arising from both C—H groupings build up a wavy layer of mol­ecules in the (011) plane (Table 1[link], Fig. 2[link]). The layers are stacked in the (100) direction by weak ππ stacking inter­actions between the 1,3-thia­zole rings [centroid–centroid distance = 3.7924 (10) Å, ring slippage = 1.39 Å].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯N2i 0.95 2.59 3.374 (2) 140
C3—H3⋯N1ii 0.95 2.57 3.257 (2) 129
Symmetry codes: (i) [-x+1, -y+1, -z+1]; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Packing diagram for the title compound along the a axis. Ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dotted lines.

Synthesis and crystallization

Commercial powder of the title compound (Fluoro­chem, UK, catalogue No. # 076318) was purified by sublimation at normal pressure on a hot plate set to 55°C. The colourless crystals formed over two days on the covering watch glass. 1H NMR (300.2 MHz, DMSO-d6) δ 9.316, 9.310 (J = 1.82 Hz, H3), 8.908, 8.902 (J = 1.84 Hz, H2). 13C NMR (75.5 MHz, DMSO-d6) δ 157.4, 133.6, 125.9, 114.5. The NMR data are consistent with those previously published by Augustine et al. (2009[Augustine, J. K., Atta, R. N., Ramappa, B. K. & Boodappa, C. (2009). Synlett, pp. 3378-3382.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C4H2N2S
Mr 110.14
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 3.7924 (3), 19.8932 (18), 6.3155 (5)
β (°) 91.084 (6)
V3) 476.37 (7)
Z 4
Radiation type Cu Kα
μ (mm−1) 4.77
Crystal size (mm) 0.24 × 0.18 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.40, 0.71
No. of measured, independent and observed [I > 2σ(I)] reflections 4709, 854, 783
Rint 0.040
(sin θ/λ)max−1) 0.596
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.09
No. of reflections 854
No. of parameters 64
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.32, −0.23
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), XP in SHELXTL (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: XP in SHELXTL (Sheldrick, 2015) and Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

1,3-Thiazole-4-carbonitrile top
Crystal data top
C4H2N2SF(000) = 224
Mr = 110.14Dx = 1.536 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 3.7924 (3) ÅCell parameters from 2588 reflections
b = 19.8932 (18) Åθ = 4.5–66.7°
c = 6.3155 (5) ŵ = 4.77 mm1
β = 91.084 (6)°T = 150 K
V = 476.37 (7) Å3Plate, colourless
Z = 40.24 × 0.18 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
854 independent reflections
Radiation source: microfocus783 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.040
Detector resolution: 8.3333 pixels mm-1θmax = 66.7°, θmin = 4.5°
φ and ω scansh = 44
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 2323
Tmin = 0.40, Tmax = 0.71l = 77
4709 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0638P)2 + 0.0618P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
854 reflectionsΔρmax = 0.32 e Å3
64 parametersΔρmin = 0.23 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8382 (4)0.61784 (9)0.5796 (3)0.0306 (4)
C20.8897 (5)0.59416 (9)0.7795 (3)0.0360 (4)
H20.8386640.5498000.8254660.043*
C31.0479 (5)0.70963 (10)0.7216 (3)0.0388 (5)
H31.1245220.7550150.7313940.047*
C40.6933 (5)0.57919 (9)0.4057 (3)0.0350 (4)
N10.9271 (4)0.68396 (9)0.5450 (3)0.0400 (4)
N20.5794 (5)0.54939 (9)0.2660 (3)0.0450 (4)
S11.06029 (11)0.65664 (2)0.93452 (7)0.0367 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0280 (7)0.0334 (9)0.0306 (9)0.0004 (7)0.0030 (6)0.0000 (6)
C20.0424 (10)0.0352 (9)0.0304 (9)0.0020 (7)0.0011 (7)0.0000 (7)
C30.0400 (9)0.0378 (9)0.0383 (11)0.0060 (7)0.0022 (8)0.0015 (7)
C40.0381 (9)0.0364 (9)0.0305 (9)0.0020 (7)0.0040 (7)0.0031 (7)
N10.0480 (10)0.0372 (10)0.0346 (9)0.0069 (6)0.0029 (7)0.0049 (6)
N20.0559 (10)0.0455 (9)0.0336 (9)0.0102 (8)0.0000 (7)0.0022 (7)
S10.0380 (3)0.0426 (3)0.0294 (3)0.00213 (16)0.0020 (2)0.00236 (15)
Geometric parameters (Å, º) top
C1—C21.358 (3)C3—N11.302 (3)
C1—N11.376 (3)C3—S11.7089 (19)
C1—C41.441 (3)C3—H30.9500
C2—S11.7024 (19)C4—N21.141 (3)
C2—H20.9500
C2—C1—N1116.58 (16)N1—C3—S1115.85 (15)
C2—C1—C4124.71 (17)N1—C3—H3122.1
N1—C1—C4118.70 (16)S1—C3—H3122.1
C1—C2—S1109.13 (14)N2—C4—C1178.96 (19)
C1—C2—H2125.4C3—N1—C1108.81 (16)
S1—C2—H2125.4C2—S1—C389.62 (9)
N1—C1—C2—S10.4 (2)C4—C1—N1—C3179.24 (16)
C4—C1—C2—S1179.26 (14)C1—C2—S1—C30.28 (15)
S1—C3—N1—C10.1 (2)N1—C3—S1—C20.12 (16)
C2—C1—N1—C30.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···N2i0.952.593.374 (2)140
C3—H3···N1ii0.952.573.257 (2)129
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z+1/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. II, S1–S19.  CrossRef Web of Science Google Scholar
First citationAugustine, J. K., Atta, R. N., Ramappa, B. K. & Boodappa, C. (2009). Synlett, pp. 3378–3382.  CrossRef Google Scholar
First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds