organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-[(Methyl­sulfon­yl)­­oxy]pyridin-1-ium methane­sulfonate

crossmark logo

aLeibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany
*Correspondence e-mail: jola.pospech@catalysis.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 13 September 2021; accepted 4 October 2021; online 19 October 2021)

The title mol­ecular salt, C6H8NO3S+·CH3O3S, consists of a cationic sulfonated pyridine N-oxide moiety and a methane­sulfonate anion. An N—O bond length of 1.4004 (15) Å is observed in the cation. In the crystal, weak C—H⋯O inter­actions link the components into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Zhen-Chu & Stang (1984[Zhen-Chu, C. & Stang, P. J. (1984). Tetrahedron Lett. 25, 3923-3926.]) reported the synthesis of 1-{[(tri­fluoro­meth­yl)sulfon­yl]­oxy}pyridin-1-ium tri­fluoro­methane­sulfonate from pyridine N-oxide and tri­fluoro­methane­sulfonic anhydride. The reactivity of O-sulfonyl pyridinium salts toward nucleophiles and their substitution of the 2-position as reaction products were described by Umemoto et al. (1996[Umemoto, T., Tomizawa, G., Hachisuka, H. & Kitano, M. (1996). J. Fluor. Chem. 77, 161-168.]). Rössler et al. (2019[Rössler, S. L., Jelier, B. J., Tripet, P. F., Shemet, A., Jeschke, G., Togni, A. & Carreira, E. M. (2019). Angew. Chem. Int. Ed. 58, 526-531.]) reported the photochemical application of 1-{[(tri­fluoro­meth­yl)sulfon­yl]­oxy}pyridin-1-ium tri­fluoro­methane­sulfonate, which allows direct amination of arenes and heteroarenes.

Here, we report the formation of 1-[(methyl­sulfon­yl)­oxy]pyridin-1-ium methane­sulfonate, C6H8NO3S+·CH3O3S, obtained from the reaction of pyridine-N-oxide and methane­sulfonic anhydride. Its mol­ecular structure (Fig. 1[link]) consists of a cationic sulfonated pyridine N-oxide moiety and a methane­sulfonate anion. The N—O bond length of 1.4004 (15) Å is similar to that observed in 1-{[(tri­fluoro­meth­yl)sulfon­yl]­oxy}pyridin-1-ium tri­fluoro­methane­sulfonate [N—O = 1.4095 (11) Å; Rössler et al., 2019[Rössler, S. L., Jelier, B. J., Tripet, P. F., Shemet, A., Jeschke, G., Togni, A. & Carreira, E. M. (2019). Angew. Chem. Int. Ed. 58, 526-531.]]. Furthermore, O1 is 0.19 Å out of the pyridinium plane in the title compound and the N1—O1—S1—C6 torsion angle is 66.72 (11)°.

[Figure 1]
Figure 1
Mol­ecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

In the crystal, the components are linked by C—H⋯O inter­actions into a three-dimensional network (Table 1[link]); the C5—H5⋯O4 bond with H⋯O = 2.19 Å is notably short.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O5i 0.95 2.29 3.1745 (19) 154
C3—H3⋯O4ii 0.95 2.35 3.132 (2) 139
C4—H4⋯O2iii 0.95 2.42 3.254 (2) 146
C5—H5⋯O4iv 0.95 2.19 3.1008 (19) 159
C6—H6A⋯O5v 0.98 2.39 3.1840 (19) 137
C6—H6B⋯O5i 0.98 2.38 3.3023 (19) 157
C6—H6C⋯O6vi 0.98 2.36 3.261 (2) 152
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+2, -y, -z+1]; (iv) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) x+1, y, z; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Synthesis and crystallization

Following a modified literature procedure of Rössler et al. (2019[Rössler, S. L., Jelier, B. J., Tripet, P. F., Shemet, A., Jeschke, G., Togni, A. & Carreira, E. M. (2019). Angew. Chem. Int. Ed. 58, 526-531.]), a stirred solution of pyridine N-oxide (3.00 g, 31.6 mmol, 1.0 eq.) in DCM (100 ml) was treated dropwise with a solution of methane­sulfonic anhydride (7.13 g, 37.9 mmol, 1.3 eq.) in DCM at −30°C. After complete addition, the reaction mixture was stirred for 2 h and allowed to warm to room temperature. The white precipitate was filtered and washed with fresh DCM (30 ml). Additional drying in vacuo yields the title compound (6.40 g, 23.8 mmol, 75%). Colourless needles suitable for X-ray crystal structure analysis were obtained by cooling a warm saturated aceto­nitrile solution to −30°C (Caution: heating to > 50°C leads to decomposition of the title compound.). 1H NMR (400 MHz, aceto­nitrile-d3) δ 8.7 (s, 2H), 8.1 (s, 1H), 7.9 (s, 2H), 3.5 (s, 2H), 2.6 (s, 3H). 13C NMR (101 MHz, aceto­nitrile-d3) δ 140.62, 129.10, 41.78, 39.65. IR (ATR, neat, cm−1): 3108 (w), 3013 (w), 2986 (w), 2943 (w), 1606 (w), 1479 (w), 1428 (w), 1381 (m), 1330 (w), 1315 (w), 1289 (w), 1182 (s), 1163 (s), 1144 (m), 1040 (s), 1002 (m), 984 (s), 818 (m), 789 (s), 762 (s), 672 (m), 655 (s), 602 (w), 554 (s), 520 (s), 507 (s), 489 (m), 456 (m), 421 (m). Analysis (%) calculated for C7H11NO6S2: C, 31.22; H, 4.12; N, 5.20; S, 23.81. Found: C, 31.02; H, 4.61; N, 4.93; S, 23.62.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H8NO3S+·CH3O3S
Mr 269.29
Crystal system, space group Monoclinic, P21/c
Temperature (K) 150
a, b, c (Å) 7.9335 (3), 7.6255 (3), 18.3875 (7)
β (°) 99.0734 (14)
V3) 1098.47 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.50
Crystal size (mm) 0.36 × 0.08 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.84, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 27689, 3400, 2732
Rint 0.033
(sin θ/λ)max−1) 0.718
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.098, 1.05
No. of reflections 3400
No. of parameters 147
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.48, −0.29
Computer programs: APEX2 (Bruker, 2014[Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2013[Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018/3 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

1-[(Methylsulfonyl)oxy]pyridin-1-ium methanesulfonate top
Crystal data top
C6H8NO3S+·CH3O3SF(000) = 560
Mr = 269.29Dx = 1.628 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.9335 (3) ÅCell parameters from 8765 reflections
b = 7.6255 (3) Åθ = 2.2–30.6°
c = 18.3875 (7) ŵ = 0.50 mm1
β = 99.0734 (14)°T = 150 K
V = 1098.47 (7) Å3Needle, colourless
Z = 40.36 × 0.08 × 0.08 mm
Data collection top
Bruker APEXII CCD
diffractometer
3400 independent reflections
Radiation source: fine-focus sealed tube2732 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.033
φ and ω scansθmax = 30.7°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 1111
Tmin = 0.84, Tmax = 0.96k = 1010
27689 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0491P)2 + 0.5052P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3400 reflectionsΔρmax = 0.48 e Å3
147 parametersΔρmin = 0.29 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7438 (2)0.3898 (2)0.41962 (9)0.0246 (3)
H10.7106770.4724270.3813580.030*
C20.6250 (2)0.3078 (3)0.45464 (10)0.0314 (4)
H20.5071030.3329000.4406380.038*
C30.6775 (2)0.1881 (2)0.51058 (10)0.0297 (4)
H30.5957130.1311490.5349620.036*
C40.8495 (2)0.1523 (2)0.53060 (9)0.0248 (3)
H40.8863770.0704440.5687620.030*
C50.96647 (19)0.2354 (2)0.49509 (8)0.0203 (3)
H51.0851980.2130890.5081700.024*
C60.95043 (19)0.3470 (2)0.27306 (8)0.0215 (3)
H6A0.9937750.3241670.2269190.032*
H6B0.8863020.4573270.2688870.032*
H6C0.8752250.2508040.2828680.032*
C70.5041 (2)0.4202 (3)0.19949 (11)0.0349 (4)
H7A0.5498110.5184710.1742790.052*
H7B0.5835960.3211590.2025000.052*
H7C0.4896570.4564060.2492780.052*
N10.90840 (16)0.34870 (16)0.44154 (7)0.0182 (2)
O11.02878 (14)0.45125 (15)0.41284 (6)0.0228 (2)
O21.18327 (14)0.19494 (16)0.36976 (7)0.0269 (3)
O31.23496 (15)0.50071 (17)0.33542 (7)0.0295 (3)
O40.33727 (14)0.30518 (17)0.07686 (6)0.0259 (3)
O50.24872 (14)0.20919 (15)0.19056 (6)0.0252 (2)
O60.19265 (15)0.50693 (16)0.14815 (7)0.0285 (3)
S11.12073 (5)0.36235 (5)0.34493 (2)0.01954 (10)
S20.30549 (4)0.35686 (5)0.15000 (2)0.01779 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0256 (7)0.0232 (8)0.0244 (8)0.0051 (6)0.0019 (6)0.0025 (6)
C20.0202 (7)0.0375 (10)0.0370 (9)0.0025 (7)0.0063 (7)0.0092 (8)
C30.0301 (8)0.0286 (9)0.0345 (9)0.0074 (7)0.0174 (7)0.0081 (7)
C40.0364 (9)0.0188 (7)0.0211 (7)0.0004 (6)0.0103 (6)0.0008 (6)
C50.0234 (7)0.0191 (7)0.0185 (7)0.0017 (6)0.0037 (5)0.0021 (5)
C60.0213 (7)0.0232 (8)0.0196 (7)0.0004 (6)0.0018 (5)0.0006 (6)
C70.0247 (8)0.0409 (11)0.0374 (10)0.0099 (8)0.0006 (7)0.0060 (8)
N10.0205 (6)0.0158 (6)0.0191 (6)0.0019 (5)0.0058 (5)0.0019 (5)
O10.0279 (5)0.0188 (5)0.0228 (5)0.0065 (4)0.0080 (4)0.0023 (4)
O20.0254 (6)0.0273 (6)0.0288 (6)0.0067 (5)0.0068 (5)0.0053 (5)
O30.0290 (6)0.0309 (7)0.0301 (6)0.0125 (5)0.0092 (5)0.0003 (5)
O40.0234 (5)0.0336 (7)0.0218 (5)0.0011 (5)0.0066 (4)0.0027 (5)
O50.0286 (6)0.0198 (6)0.0284 (6)0.0039 (5)0.0082 (5)0.0022 (5)
O60.0326 (6)0.0242 (6)0.0304 (6)0.0097 (5)0.0098 (5)0.0047 (5)
S10.01875 (17)0.01993 (19)0.02037 (18)0.00212 (13)0.00443 (13)0.00094 (13)
S20.01614 (16)0.01827 (18)0.01905 (18)0.00070 (12)0.00307 (12)0.00026 (13)
Geometric parameters (Å, º) top
C1—N11.3418 (19)C6—H6B0.9800
C1—C21.373 (2)C6—H6C0.9800
C1—H10.9500C7—S21.7586 (17)
C2—C31.389 (3)C7—H7A0.9800
C2—H20.9500C7—H7B0.9800
C3—C41.383 (3)C7—H7C0.9800
C3—H30.9500N1—O11.4004 (15)
C4—C51.371 (2)O1—S11.6847 (11)
C4—H40.9500O2—S11.4188 (12)
C5—N11.336 (2)O3—S11.4195 (12)
C5—H50.9500O4—S21.4610 (12)
C6—S11.7384 (15)O5—S21.4605 (12)
C6—H6A0.9800O6—S21.4500 (12)
N1—C1—C2117.39 (15)S2—C7—H7B109.5
N1—C1—H1121.3H7A—C7—H7B109.5
C2—C1—H1121.3S2—C7—H7C109.5
C1—C2—C3119.94 (15)H7A—C7—H7C109.5
C1—C2—H2120.0H7B—C7—H7C109.5
C3—C2—H2120.0C5—N1—C1125.35 (14)
C4—C3—C2119.65 (16)C5—N1—O1117.54 (12)
C4—C3—H3120.2C1—N1—O1116.47 (13)
C2—C3—H3120.2N1—O1—S1117.09 (9)
C5—C4—C3119.68 (16)O2—S1—O3120.71 (7)
C5—C4—H4120.2O2—S1—O1107.09 (7)
C3—C4—H4120.2O3—S1—O198.72 (7)
N1—C5—C4117.98 (14)O2—S1—C6111.99 (8)
N1—C5—H5121.0O3—S1—C6113.03 (8)
C4—C5—H5121.0O1—S1—C6102.42 (7)
S1—C6—H6A109.5O6—S2—O5112.42 (7)
S1—C6—H6B109.5O6—S2—O4112.76 (7)
H6A—C6—H6B109.5O5—S2—O4111.97 (7)
S1—C6—H6C109.5O6—S2—C7107.14 (9)
H6A—C6—H6C109.5O5—S2—C7105.72 (9)
H6B—C6—H6C109.5O4—S2—C7106.25 (8)
S2—C7—H7A109.5
O1—N1—C1—C2171.14 (14)C2—C1—N1—C50.5 (2)
N1—C1—C2—C30.2 (3)C2—C1—N1—O1171.14 (14)
C1—C2—C3—C40.0 (3)C5—N1—O1—S185.36 (14)
C2—C3—C4—C50.1 (3)C1—N1—O1—S1103.28 (13)
C3—C4—C5—N10.3 (2)N1—O1—S1—O251.23 (11)
C4—C5—N1—C10.6 (2)N1—O1—S1—O3177.23 (10)
C4—C5—N1—O1171.09 (13)N1—O1—S1—C666.72 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O5i0.952.293.1745 (19)154
C3—H3···O4ii0.952.353.132 (2)139
C4—H4···O2iii0.952.423.254 (2)146
C5—H5···O4iv0.952.193.1008 (19)159
C6—H6A···O5v0.982.393.1840 (19)137
C6—H6B···O5i0.982.383.3023 (19)157
C6—H6C···O6vi0.982.363.261 (2)152
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+2, y, z+1; (iv) x+1, y+1/2, z+1/2; (v) x+1, y, z; (vi) x+1, y1/2, z+1/2.
 

Funding information

Financial support by the DFG is gratefully acknowledged (DFG, grant No. 401007518).

References

First citationBruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRössler, S. L., Jelier, B. J., Tripet, P. F., Shemet, A., Jeschke, G., Togni, A. & Carreira, E. M. (2019). Angew. Chem. Int. Ed. 58, 526–531.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationUmemoto, T., Tomizawa, G., Hachisuka, H. & Kitano, M. (1996). J. Fluor. Chem. 77, 161–168.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhen-Chu, C. & Stang, P. J. (1984). Tetrahedron Lett. 25, 3923–3926.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds