organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-(4-Methyl­phen­yl)-4H-chromen-4-one

crossmark logo

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 June 2021; accepted 7 June 2021; online 15 June 2021)

In the title compound, C16H12O2, the dihedral angle formed between the plane of the chromenone ring system (r.m.s. deviation = 0.031 Å) and the pendant benzene ring is 31.09 (5)°. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into C(6) chains propagating along the a-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Isoflavones are flavonoid polyphenols with a general C6—C3—C6 carbon-atom skeleton. Since isoflavones have a substituent at the 2-position of the flavonoid skeleton, they exhibit structural differences from other compounds belonging to flavonoids having a substituent at the 3-position. Isoflavones are sometimes classified as phytoestrogens, and they also exhibit different physiological functions from other flavonoids (Tikkanen et al., 2000[Tikkanen, M. J. & Adlercreutz, H. (2000). Biochem. Pharmacol. 60, 1-5.]). Recent research has shown that isoflavones have broad biological activities with resspect to osteoporosis (Ye et al., 2006[Ye, Y.-B., Tang, X.-Y., Verbruggen, M. A. & Su, Y.-X. (2006). Eur. J. Nutr. 45, 327-334.]), anti­cancer activity (Messina et al., 2009[Messina, M. & Hilakivi-Clarke, L. (2009). Nutr. Cancer, 61, 792-798.]), cardiovascular diseases (Zhan et al., 2005[Zhan, S. & Ho, S. C. (2005). Am. J. Clin. Nutr. 81, 397-408.]) and the inhibition of thyroid peroxidase (Chang et al., 2000[Chang, H. C. & Doerge, D. R. (2000). Toxicol. Appl. Pharmacol. 168, 244-252.]). As part of our ongoing studies of isoflavones (Ahn et al., 2020[Ahn, S, Sung, J., Lee, J. H., Yoo, M., Lim, Y., Shin, S. Y. & Koh, D. (2020). Crystals, 10, 413.]; Shin et al., 2020[Shin, S. Y., Lee, Y. H., Lim, Y., Lee, H. J., Lee, J. H., Yoo, M., Ahn, S. & Koh, D. (2020). Crystals, 10, 911.]), the title compound was synthesized and its crystal structure was determined.

The mol­ecular structure of the title compound, C16H12O2, is shown in Fig. 1[link]. The chromenone ring system (C1–C9/O2) is slightly twisted from planarity, with a maximum deviation of 0.059 Å at C2 (root–mean–square deviation = 0.031 Å). The dihedral angle formed between the mean plane of the chromenone ring system and the pendant benzene (C10–C15) ring is 31.09 (5)°. In the crystal, weak C—H⋯O hydrogen bonds link the mol­ecules into C(6) chains propagating along the a-axis direction (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O1i 0.94 2.49 3.4255 (16) 172
Symmetry code: (i) [x-1, y, z].
[Figure 1]
Figure 1
The mol­ecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2]
Figure 2
Part of the crystal structure of the title compound with C—H⋯O hydrogen bonds shown as dashed lines.

Synthesis and crystallization

The title compound was synthesized in three steps from the commercially available starting materials 2-hydoxyaceto­phenone and 4-methyl­benzaldehyde according to the reaction scheme shown in Fig. 3[link]. To a solution of 2-hydoxy­aceto­phenone (408 mg, 3 mmol) in 40 ml of ethanol was added 4-methyl­benzaldehyde (360 mg, 3 mmol) and the temperature was adjusted to around 277 K in an ice-bath. To the cooled reaction mixture were added 4 ml of 30% aqueous KOH solution and the reaction mixture was stirred at room temperature for 3 h. This mixture was poured into iced water (100 ml) and was acidified (pH = 2) with 2 M HCl solution to give a precipitate. Filtration and washing with water afforded crude solid of chalcone compound (I). To a solution of I (1.5 mmol, 357 mg) in 20 ml aqueous ethanol (H2O:ethanol = 1:2) was added excess sodium acetate and the solution was refluxed at 362 K for 2 h. The reaction mixture was cooled to room temperature and was poured into iced water (50 ml) to give a precipitate of the flavanone compound II. Compound II (163 mg, 0.5 mmol) was dissolved in 15 ml of methanol and the temperature was adjusted to around 327 K. To the clear solution were added catalytic amount of p-toluene sulfonic acid and 1.2eq of thallium(III) nitrate trihydrate and the mixture was refluxed for 5 h. The reaction mixture was cooled to room temperature and the resulting precipitate was filtered and washed with water. This solid was recrystallized from an ethanol solution to obtain single crystals of the title compound.

[Figure 3]
Figure 3
Synthetic scheme for the preparation of the title compound.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H12O2
Mr 236.26
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 223
a, b, c (Å) 6.4514 (3), 7.0785 (4), 13.3144 (7)
α, β, γ (°) 78.906 (2), 85.276 (2), 79.628 (2)
V3) 586.19 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.56 × 0.31 × 0.12
 
Data collection
Diffractometer Bruker PHOTON II M14 CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.666, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 18172, 2904, 2459
Rint 0.032
(sin θ/λ)max−1) 0.668
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.124, 1.06
No. of reflections 2904
No. of parameters 164
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.22
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

3-(4-Methylphenyl)-4H-chromen-4-one top
Crystal data top
C16H12O2Z = 2
Mr = 236.26F(000) = 248
Triclinic, P1Dx = 1.339 Mg m3
a = 6.4514 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.0785 (4) ÅCell parameters from 7663 reflections
c = 13.3144 (7) Åθ = 3.0–28.3°
α = 78.906 (2)°µ = 0.09 mm1
β = 85.276 (2)°T = 223 K
γ = 79.628 (2)°Block, colourless
V = 586.19 (5) Å30.56 × 0.31 × 0.12 mm
Data collection top
Bruker PHOTON II M14 CCD
diffractometer
2459 reflections with I > 2σ(I)
φ and ω scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 28.3°, θmin = 3.0°
Tmin = 0.666, Tmax = 0.746h = 88
18172 measured reflectionsk = 99
2904 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.2032P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2904 reflectionsΔρmax = 0.27 e Å3
164 parametersΔρmin = 0.22 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.56922 (19)0.72771 (17)0.62667 (10)0.0304 (3)
O10.72856 (15)0.67806 (17)0.67655 (8)0.0452 (3)
C20.35627 (19)0.78209 (17)0.67070 (9)0.0290 (3)
C30.19573 (19)0.84130 (19)0.60689 (9)0.0318 (3)
H30.06190.88260.63650.038*
O20.20859 (13)0.84701 (14)0.50433 (7)0.0338 (2)
C40.40159 (19)0.78707 (17)0.45916 (9)0.0294 (3)
C50.4074 (2)0.7839 (2)0.35475 (10)0.0365 (3)
H50.28360.82150.31820.044*
C60.5979 (2)0.7246 (2)0.30617 (11)0.0408 (3)
H60.60400.71970.23590.049*
C70.7824 (2)0.6717 (2)0.36019 (11)0.0416 (3)
H70.91210.63260.32630.050*
C80.7736 (2)0.67708 (19)0.46305 (11)0.0361 (3)
H80.89840.64300.49890.043*
C90.58123 (19)0.73260 (16)0.51535 (9)0.0289 (3)
C100.3097 (2)0.77022 (18)0.78255 (9)0.0319 (3)
C110.4540 (2)0.8019 (2)0.84770 (11)0.0408 (3)
H110.58670.83020.82090.049*
C120.4033 (3)0.7920 (2)0.95158 (11)0.0467 (4)
H120.50350.81250.99400.056*
C130.2093 (3)0.7528 (2)0.99470 (11)0.0450 (3)
C140.0661 (2)0.7211 (2)0.93000 (11)0.0469 (4)
H140.06720.69520.95700.056*
C150.1159 (2)0.7269 (2)0.82625 (10)0.0400 (3)
H150.01730.70120.78460.048*
C160.1555 (3)0.7426 (3)1.10810 (12)0.0646 (5)
H16A0.22350.61851.14540.097*
H16B0.00380.75461.12060.097*
H16C0.20460.84821.13100.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0281 (6)0.0288 (6)0.0353 (6)0.0060 (4)0.0082 (5)0.0047 (5)
O10.0290 (5)0.0644 (7)0.0421 (5)0.0023 (4)0.0131 (4)0.0094 (5)
C20.0293 (6)0.0282 (6)0.0307 (6)0.0069 (4)0.0057 (4)0.0047 (4)
C30.0274 (6)0.0379 (6)0.0298 (6)0.0038 (5)0.0036 (4)0.0062 (5)
O20.0263 (4)0.0444 (5)0.0301 (4)0.0018 (4)0.0074 (3)0.0066 (4)
C40.0288 (6)0.0273 (6)0.0328 (6)0.0054 (4)0.0038 (5)0.0058 (4)
C50.0398 (7)0.0375 (7)0.0338 (6)0.0075 (5)0.0081 (5)0.0068 (5)
C60.0504 (8)0.0404 (7)0.0335 (6)0.0100 (6)0.0016 (6)0.0106 (5)
C70.0389 (7)0.0401 (7)0.0460 (8)0.0056 (6)0.0061 (6)0.0133 (6)
C80.0296 (6)0.0344 (6)0.0446 (7)0.0040 (5)0.0030 (5)0.0085 (5)
C90.0290 (6)0.0249 (5)0.0337 (6)0.0060 (4)0.0046 (5)0.0048 (4)
C100.0344 (6)0.0315 (6)0.0304 (6)0.0056 (5)0.0066 (5)0.0047 (5)
C110.0408 (7)0.0481 (8)0.0369 (7)0.0140 (6)0.0080 (6)0.0078 (6)
C120.0553 (9)0.0543 (9)0.0347 (7)0.0139 (7)0.0145 (6)0.0088 (6)
C130.0572 (9)0.0460 (8)0.0302 (7)0.0050 (7)0.0050 (6)0.0054 (6)
C140.0421 (8)0.0615 (10)0.0356 (7)0.0105 (7)0.0009 (6)0.0048 (6)
C150.0356 (7)0.0516 (8)0.0341 (7)0.0112 (6)0.0052 (5)0.0058 (6)
C160.0831 (13)0.0786 (13)0.0306 (8)0.0110 (10)0.0025 (8)0.0086 (8)
Geometric parameters (Å, º) top
C1—O11.2304 (15)C8—C91.4026 (18)
C1—C21.4638 (17)C8—H80.9400
C1—C91.4719 (17)C10—C151.3947 (18)
C2—C31.3497 (16)C10—C111.3974 (18)
C2—C101.4840 (17)C11—C121.386 (2)
C3—O21.3544 (15)C11—H110.9400
C3—H30.9400C12—C131.385 (2)
O2—C41.3699 (15)C12—H120.9400
C4—C91.3865 (16)C13—C141.388 (2)
C4—C51.3919 (17)C13—C161.512 (2)
C5—C61.376 (2)C14—C151.3866 (19)
C5—H50.9400C14—H140.9400
C6—C71.397 (2)C15—H150.9400
C6—H60.9400C16—H16A0.9700
C7—C81.374 (2)C16—H16B0.9700
C7—H70.9400C16—H16C0.9700
O1—C1—C2124.34 (12)C4—C9—C1121.04 (11)
O1—C1—C9120.97 (12)C8—C9—C1121.16 (11)
C2—C1—C9114.68 (10)C15—C10—C11117.53 (12)
C3—C2—C1118.45 (11)C15—C10—C2120.11 (11)
C3—C2—C10118.92 (11)C11—C10—C2122.36 (12)
C1—C2—C10122.62 (10)C12—C11—C10120.57 (13)
C2—C3—O2126.36 (11)C12—C11—H11119.7
C2—C3—H3116.8C10—C11—H11119.7
O2—C3—H3116.8C13—C12—C11121.94 (13)
C3—O2—C4118.06 (9)C13—C12—H12119.0
O2—C4—C9121.22 (11)C11—C12—H12119.0
O2—C4—C5116.67 (11)C12—C13—C14117.48 (13)
C9—C4—C5122.11 (12)C12—C13—C16121.51 (15)
C6—C5—C4118.67 (12)C14—C13—C16121.00 (15)
C6—C5—H5120.7C15—C14—C13121.28 (14)
C4—C5—H5120.7C15—C14—H14119.4
C5—C6—C7120.67 (13)C13—C14—H14119.4
C5—C6—H6119.7C14—C15—C10121.18 (13)
C7—C6—H6119.7C14—C15—H15119.4
C8—C7—C6119.77 (13)C10—C15—H15119.4
C8—C7—H7120.1C13—C16—H16A109.5
C6—C7—H7120.1C13—C16—H16B109.5
C7—C8—C9120.98 (12)H16A—C16—H16B109.5
C7—C8—H8119.5C13—C16—H16C109.5
C9—C8—H8119.5H16A—C16—H16C109.5
C4—C9—C8117.77 (12)H16B—C16—H16C109.5
O1—C1—C2—C3177.41 (13)C7—C8—C9—C1176.44 (12)
C9—C1—C2—C33.73 (16)O1—C1—C9—C4179.50 (12)
O1—C1—C2—C104.05 (19)C2—C1—C9—C40.59 (16)
C9—C1—C2—C10174.81 (10)O1—C1—C9—C81.32 (18)
C1—C2—C3—O23.58 (19)C2—C1—C9—C8177.58 (11)
C10—C2—C3—O2175.02 (11)C3—C2—C10—C1530.64 (18)
C2—C3—O2—C40.20 (19)C1—C2—C10—C15147.90 (13)
C3—O2—C4—C93.63 (17)C3—C2—C10—C11149.10 (13)
C3—O2—C4—C5176.38 (11)C1—C2—C10—C1132.37 (19)
O2—C4—C5—C6179.99 (12)C15—C10—C11—C120.6 (2)
C9—C4—C5—C60.01 (19)C2—C10—C11—C12179.13 (13)
C4—C5—C6—C71.0 (2)C10—C11—C12—C130.7 (2)
C5—C6—C7—C80.6 (2)C11—C12—C13—C140.7 (2)
C6—C7—C8—C90.8 (2)C11—C12—C13—C16179.92 (16)
O2—C4—C9—C8178.63 (11)C12—C13—C14—C150.5 (2)
C5—C4—C9—C81.36 (18)C16—C13—C14—C15178.87 (15)
O2—C4—C9—C13.14 (18)C13—C14—C15—C101.8 (2)
C5—C4—C9—C1176.87 (11)C11—C10—C15—C141.8 (2)
C7—C8—C9—C41.79 (19)C2—C10—C15—C14177.94 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O1i0.942.493.4255 (16)172
Symmetry code: (i) x1, y, z.
 

Funding information

The authors acknowledge financial support from Dongduk Women's University, Republic of Korea.

References

First citationAhn, S, Sung, J., Lee, J. H., Yoo, M., Lim, Y., Shin, S. Y. & Koh, D. (2020). Crystals, 10, 413.  CrossRef Google Scholar
First citationBruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationChang, H. C. & Doerge, D. R. (2000). Toxicol. Appl. Pharmacol. 168, 244–252.  CrossRef PubMed CAS Google Scholar
First citationMessina, M. & Hilakivi-Clarke, L. (2009). Nutr. Cancer, 61, 792–798.  CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShin, S. Y., Lee, Y. H., Lim, Y., Lee, H. J., Lee, J. H., Yoo, M., Ahn, S. & Koh, D. (2020). Crystals, 10, 911.  CrossRef Google Scholar
First citationTikkanen, M. J. & Adlercreutz, H. (2000). Biochem. Pharmacol. 60, 1–5.  CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Y.-B., Tang, X.-Y., Verbruggen, M. A. & Su, Y.-X. (2006). Eur. J. Nutr. 45, 327–334.  CrossRef PubMed CAS Google Scholar
First citationZhan, S. & Ho, S. C. (2005). Am. J. Clin. Nutr. 81, 397–408.  CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds