organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3,5-Di­bromo-4-carbamoyl­benzoic acid 2-propanol monosolvate

crossmark logo

aDepartment of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, MN 55455, USA
*Correspondence e-mail: trit0026@umn.edu

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 April 2021; accepted 12 April 2021; online 20 April 2021)

In the title solvated crystal, C8H5Br2NO3·C3H8O, the acid mol­ecules form inversion dimers by pairwise N—H⋯O hydrogen bonds between carbamoyl groups and the carboxyl and carbamoyl groups link to form head-to-tail inversion dimers. The 2-propanol hydroxyl group inter­poses between adjacent head-tail pairs, resulting in C33(10) chains of hydrogen bonds propagating along [100]. The mol­ecules of 2-propanol are disordered over two sets of sites in a 0.598 (8):0.402 (8) ratio. The best-fit planes of the carbamoyl group and benzene ring are inclined by 88.26 (11)°. This is a greater inclination than was previously reported with CH3, Cl, F or H in place of the Br atoms, although those analogues did not have a para carboxyl group.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Although the structure of 2-bromo­benzamide is reported twice (Izumi & Okamoto, 1972[Izumi, T. & Okamoto, N. (1972). Mem. Chubu Inst. Technol. 8, 139-142.]; Gulyás et al., 2015[Gulyás, H., Rivilla, I., Curreli, S., Freixa, Z. & van Leeuwen, P. W. N. M. (2015). Catal. Sci. Technol. 5, 3822-3828.]) in the current version of the Cambridge Structural Database (version 5.42, Nov 2020; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]), no 2,6-di­bromo- or 4-carboxyl­benzamides were found. The title compound (I) is an example of both classes, and was accidentally prepared in an attempt to selectively hydrolyze the ester group of a cyano ester (II) (Fig. 1[link]). The target was cyano acid (III), for a study in our laboratory involving co-crystals of (III) with anthracene (Noland et al., 2017[Noland, W. E., Rieger, J. L., Tu, Z. H. & Tritch, K. J. (2017). Acta Cryst. E73, 1743-1746.]).

[Figure 1]
Figure 1
The synthesis of (I).

In the title crystal (Fig. 2[link]), mol­ecules of (I) form typical amide inversion dimers based on pairwise N1—H1A⋯O1 hydrogen bonds (Table 1[link]; Fig. 3[link]). The carboxyl groups do not homo-dimerize. Instead, they participate in amido-carb­oxy N1—H1B⋯O2 hydrogen bonding that forms head-to-tail inversion dimers about the center of the unit cell. The solvent mol­ecule of 2-propanol inter­poses between H3A of the acid group and O1 of the amide group, forming an O3—H3A⋯O4—H4B⋯O1 hydrogen-bonded chain. Excluding amide dimerization, these hydrogen bonds collectively form C33(10) chains propagating along [100]. The 2-propanol mol­ecule is disordered over two sets of sites in a 0.598 (8):0.402 (8) ratio. The Br atoms and benzene ring do not participate in any short inter­actions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O4 0.84 (1) 1.74 (1) 2.580 (12) 174 (3)
O3—H3A⋯O4′ 0.84 (1) 1.72 (2) 2.560 (19) 173 (3)
N1—H1A⋯O1i 0.88 (1) 2.06 (1) 2.929 (2) 171 (3)
N1—H1B⋯O2ii 0.88 (1) 2.08 (1) 2.931 (3) 164 (3)
O4—H4B⋯O1iii 0.84 (1) 2.05 (3) 2.802 (11) 149 (5)
O4′—H4C⋯O1iii 0.84 (1) 1.90 (5) 2.606 (18) 141 (7)
Symmetry codes: (i) [-x+1, -y, -z+2]; (ii) [-x+1, -y+1, -z+1]; (iii) [-x+2, -y+1, -z+1].
[Figure 2]
Figure 2
The mol­ecular structure of (I), with atomic numbering and displacement ellipsoids at the 50% probability level. For clarity, only the major disorder component of 2-propanol is shown.
[Figure 3]
Figure 3
Hydrogen bonding in the crystal of (I), viewed along [010]. For clarity, the minor component and the lower-left mol­ecule of 2-propanol are omitted from the unit cell. The dashed green lines represent amide dimerization. The dashed magenta lines represent the hydrogen bonds that form chains along [100]. The dashed orange line and its magenta counterpart (O2⋯N1) illustrate head-to-tail dimerization.

A dihedral angle of 88.26 (11)° is observed between the best-fit planes of the carbamoyl group (O1/N1/C1) and the benzene ring (C2–C7; Fig. 4[link]). The corresponding angle is also shown for 2,4,6-trimethyl- (IV; Gdaniec et al., 2004[Gdaniec, M., Olszewska, T. & Połoński, T. (2004). Acta Cryst. C60, o41-o43.]), 2,6-di­chloro- (V; Mukherjee et al., 2013[Mukherjee, A., Tothadi, S., Chakraborty, S., Ganguly, S. & Desiraju, G. R. (2013). CrystEngComm, 15, 4640-4654.]), 2,6-di­fluoro- (VI; Rauf et al., 2006[Rauf, M. K., Badshah, A., Bolte, M. & Saeed, A. (2006). Acta Cryst. E62, o1070-o1071.]), and unsubstituted (VII; Blake et al., 1972[Blake, C. C. F. & Small, R. W. H. (1972). Acta Cryst. B28, 2201-2206.]) benzamides. Although none of these reported crystals contain a para-carboxyl group, crystal (I) fits the expected trend. The ortho Br atoms cause a carbamoyl inclination slightly larger than the inclination observed with ortho methyl groups, which is in turn larger than inclinations caused by ortho Cl, F, or H atoms.

[Figure 4]
Figure 4
Substituted benzamides, in their crystals, viewed along carbamoyl group ipso bonds. The listed dihedral angles (ω) are between the best-fit planes of the respective benzene rings and carbamoyl groups.

Synthesis and crystallization

3,5-Di­bromo-4-carbamoyl­benzoic acid (I): a portion of compound (II) (589 mg, Fig. 1[link]) taken from our prior study (Noland et al., 2017[Noland, W. E., Rieger, J. L., Tu, Z. H. & Tritch, K. J. (2017). Acta Cryst. E73, 1743-1746.]) was placed in a round-bottomed flask with water (5 ml), 2-propanol (5 ml) and NaOH (186 mg). The resulting mixture was refluxed for 1 h, and then cooled to 290 K. Hydro­chloric acid (6 M) was added dropwise until the pH of the mixture was less than 4. An off-white precipitate was collected by suction filtration, and then triturated with 2-propanol, giving a white powder (476 mg, 78%), m.p. 528–529 K. 1H NMR (500 MHz, DMSO-d6) δ 13.705 (s, 1H, H3A), 8.124 (s, 1H, H1A or H1B), 8.069 (s, 2H, H4A, H6A), 7.887 (s, 1H, H1B or H1A); 13C NMR (126 MHz, DMSO-d6) δ 166.8 (1 C, C1 or C8), 164.5 (1 C, C8 or C1), 144.3 (1 C, C5), 133.4 (1 C, C2), 132.0 (2 C, C4, C6), 119.7 (2 C, C3, C7); IR (KBr, cm−1) 3442, 3314, 3185, 3088, 2921, 2487, 1719, 1648, 1604, 1542, 1371, 1270, 901, 743; MS (ESI, m/z) [M − H] calculated for C8H581Br79BrNO3 321.8543, found 321.8549.

Crystallization: a portion of the white powder was dissolved in refluxing 2-propanol and the resulting mixture was incrementally cooled to 268 K over 6 h. Crystals were collected by deca­ntation, and then washed with 2-propanol.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C8H5Br2NO3·C3H8O
Mr 383.04
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 173
a, b, c (Å) 7.2866 (5), 8.5212 (6), 12.1832 (8)
α, β, γ (°) 71.376 (1), 81.745 (1), 83.682 (1)
V3) 707.76 (8)
Z 2
Radiation type Mo Kα
μ (mm−1) 5.73
Crystal size (mm) 0.40 × 0.38 × 0.16
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Krause et al., 2015[Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3-10.])
Tmin, Tmax 0.486, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 8139, 3128, 2683
Rint 0.021
(sin θ/λ)max−1) 0.645
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.065, 1.04
No. of reflections 3128
No. of parameters 201
No. of restraints 151
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.63, −0.90
Computer programs: APEX3 and SAINT (Bruker, 2018[Bruker (2018). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.]), SHELXT2014 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Structural data


Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: publCIF (Westrip, 2010).

3,5-Dibromo-4-carbamoylbenzoic acid 2-propanol monosolvate top
Crystal data top
C8H5Br2NO3·C3H8OF(000) = 376
Mr = 383.04Dx = 1.797 Mg m3
Triclinic, P1Melting point: 528 K
a = 7.2866 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5212 (6) ÅCell parameters from 2971 reflections
c = 12.1832 (8) Åθ = 2.6–27.3°
α = 71.376 (1)°µ = 5.73 mm1
β = 81.745 (1)°T = 173 K
γ = 83.682 (1)°Block, colourless
V = 707.76 (8) Å30.40 × 0.38 × 0.16 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
2683 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.021
φ and ω scansθmax = 27.3°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Krause et al., 2015)
h = 99
Tmin = 0.486, Tmax = 0.746k = 1110
8139 measured reflectionsl = 1515
3128 independent reflections
Refinement top
Refinement on F2151 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0296P)2 + 0.5063P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3128 reflectionsΔρmax = 0.63 e Å3
201 parametersΔρmin = 0.90 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Angle of C2/C3/C4/C5/C6/C7 vs. N1/C1/O1 below Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

6.9373 (0.0020) x - 1.2809 (0.0074) y + 2.6193 (0.0107) z = 5.8890 (0.0086)

* 0.0044 (0.0015) C2 * -0.0085 (0.0016) C3 * 0.0048 (0.0015) C4 * 0.0030 (0.0015) C5 * -0.0070 (0.0015) C6 * 0.0033 (0.0015) C7

Rms deviation of fitted atoms = 0.0055

1.3629 (0.0122) x + 7.5482 (0.0167) y + 8.7867 (0.0367) z = 9.5168 (0.0262)

Angle to previous plane (with approximate esd) = 88.256 ( 0.113 )

* 0.0000 (0.0000) N1 * 0.0000 (0.0000) C1 * 0.0000 (0.0000) O1

Rms deviation of fitted atoms = 0.0000

Refinement. A direct-methods solution was calculated, followed by full-matrix least squares / difference Fourier cycles. All H atoms were placed in calculated positions (C—H = 0.95–1.00 Å, N—H = 0.88 Å, O—H = 0.84 Å) and refined as riding atoms with Uiso(H) set to 1.2 or 1.5Ueq(C/N/O).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.61784 (4)0.53550 (3)0.84990 (2)0.04348 (9)
Br20.61751 (4)0.03664 (3)0.63196 (2)0.04169 (9)
O10.6947 (2)0.0875 (2)0.90019 (14)0.0332 (4)
O20.8164 (3)0.6055 (2)0.30554 (14)0.0405 (4)
O30.8603 (3)0.7832 (2)0.39910 (15)0.0416 (4)
H3A0.891 (4)0.846 (3)0.3317 (11)0.050*
N10.3942 (3)0.1688 (3)0.87692 (17)0.0327 (4)
H1A0.355 (4)0.097 (3)0.9439 (12)0.039*
H1B0.312 (3)0.227 (3)0.8307 (19)0.039*
C10.5730 (3)0.1757 (3)0.84327 (18)0.0252 (4)
C20.6307 (3)0.3004 (3)0.72637 (17)0.0241 (4)
C30.6625 (3)0.4624 (3)0.71657 (19)0.0265 (4)
C40.7250 (3)0.5743 (3)0.61079 (19)0.0278 (5)
H4A0.7484380.6838250.6061280.033*
C50.7527 (3)0.5239 (3)0.51214 (18)0.0264 (5)
C60.7196 (3)0.3647 (3)0.51800 (19)0.0276 (5)
H6A0.7373110.3313520.4496730.033*
C70.6603 (3)0.2545 (3)0.62524 (19)0.0256 (4)
C80.8134 (3)0.6414 (3)0.3944 (2)0.0308 (5)
O40.9365 (13)0.9719 (9)0.1879 (11)0.0313 (15)0.598 (8)
H4B1.0530 (14)0.964 (8)0.184 (5)0.047*0.598 (8)
C90.872 (3)1.205 (2)0.2603 (12)0.060 (2)0.598 (8)
H9A0.8207551.3203740.2414380.091*0.598 (8)
H9B1.0002091.1986520.2784490.091*0.598 (8)
H9C0.7966441.1358930.3278540.091*0.598 (8)
C100.8716 (7)1.1441 (5)0.1583 (4)0.0345 (13)0.598 (8)
H10A0.7399711.1529280.1412460.041*0.598 (8)
C110.9845 (12)1.2460 (14)0.0493 (7)0.0429 (18)0.598 (8)
H11A0.9792501.2011080.0147630.064*0.598 (8)
H11B1.1139361.2412510.0642080.064*0.598 (8)
H11C0.9331351.3615770.0281510.064*0.598 (8)
O4'0.978 (2)0.9791 (14)0.1997 (18)0.0313 (15)0.402 (8)
H4C1.049 (8)0.954 (10)0.146 (5)0.047*0.402 (8)
C9'0.883 (5)1.202 (4)0.2791 (18)0.060 (2)0.402 (8)
H9D0.8874101.3213740.2650580.091*0.402 (8)
H9E0.9389381.1405680.3506510.091*0.402 (8)
H9F0.7538691.1744550.2876470.091*0.402 (8)
C10'0.9900 (11)1.1550 (7)0.1784 (5)0.0304 (17)0.402 (8)
H10B1.1233311.1763850.1744820.036*0.402 (8)
C11'0.9228 (19)1.250 (2)0.0639 (10)0.0429 (18)0.402 (8)
H11D0.7933611.2275770.0652300.064*0.402 (8)
H11E1.0000831.2158420.0015920.064*0.402 (8)
H11F0.9310111.3690410.0497290.064*0.402 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0693 (2)0.03621 (15)0.02540 (13)0.00969 (12)0.00169 (12)0.01126 (10)
Br20.05996 (18)0.02835 (13)0.03767 (15)0.01118 (11)0.00300 (12)0.00992 (11)
O10.0278 (8)0.0364 (9)0.0226 (8)0.0049 (7)0.0010 (6)0.0086 (7)
O20.0473 (10)0.0395 (10)0.0201 (8)0.0044 (8)0.0024 (7)0.0058 (7)
O30.0468 (10)0.0323 (9)0.0294 (9)0.0094 (8)0.0080 (8)0.0101 (7)
N10.0295 (10)0.0359 (11)0.0200 (10)0.0038 (8)0.0008 (8)0.0080 (8)
C10.0314 (11)0.0240 (10)0.0155 (10)0.0062 (9)0.0000 (8)0.0007 (8)
C20.0260 (10)0.0237 (10)0.0170 (10)0.0044 (8)0.0003 (8)0.0016 (8)
C30.0309 (11)0.0270 (11)0.0186 (10)0.0023 (9)0.0007 (8)0.0039 (8)
C40.0284 (11)0.0238 (10)0.0259 (11)0.0044 (9)0.0024 (9)0.0005 (9)
C50.0221 (10)0.0276 (11)0.0195 (10)0.0012 (8)0.0004 (8)0.0053 (8)
C60.0295 (11)0.0299 (11)0.0184 (10)0.0003 (9)0.0010 (8)0.0022 (9)
C70.0281 (11)0.0231 (10)0.0218 (10)0.0033 (8)0.0011 (8)0.0019 (8)
C80.0222 (10)0.0311 (12)0.0246 (11)0.0025 (9)0.0016 (9)0.0080 (9)
O40.026 (4)0.0233 (10)0.034 (3)0.0051 (17)0.008 (3)0.0027 (10)
C90.091 (4)0.0453 (19)0.042 (4)0.0020 (19)0.009 (4)0.016 (3)
C100.036 (3)0.027 (2)0.035 (2)0.0005 (17)0.0004 (19)0.0050 (17)
C110.059 (6)0.0292 (15)0.032 (2)0.001 (4)0.000 (3)0.0010 (18)
O4'0.026 (4)0.0233 (10)0.034 (3)0.0051 (17)0.008 (3)0.0027 (10)
C9'0.091 (4)0.0453 (19)0.042 (4)0.0020 (19)0.009 (4)0.016 (3)
C10'0.039 (4)0.020 (3)0.030 (3)0.007 (2)0.009 (2)0.001 (2)
C11'0.059 (6)0.0292 (15)0.032 (2)0.001 (4)0.000 (3)0.0010 (18)
Geometric parameters (Å, º) top
Br1—C31.893 (2)C9—C101.492 (10)
Br2—C71.890 (2)C9—H9A0.9800
O1—C11.236 (3)C9—H9B0.9800
O2—C81.213 (3)C9—H9C0.9800
O3—C81.311 (3)C10—C111.517 (8)
O3—H3A0.839 (3)C10—H10A1.0000
N1—C11.311 (3)C11—H11A0.9800
N1—H1A0.880 (3)C11—H11B0.9800
N1—H1B0.880 (3)C11—H11C0.9800
C1—C21.515 (3)O4'—C10'1.448 (11)
C2—C31.389 (3)O4'—H4C0.840 (3)
C2—C71.390 (3)C9'—C10'1.497 (13)
C3—C41.385 (3)C9'—H9D0.9800
C4—C51.382 (3)C9'—H9E0.9800
C4—H4A0.9500C9'—H9F0.9800
C5—C61.381 (3)C10'—C11'1.492 (12)
C5—C81.501 (3)C10'—H10B1.0000
C6—C71.385 (3)C11'—H11D0.9800
C6—H6A0.9500C11'—H11E0.9800
O4—C101.437 (8)C11'—H11F0.9800
O4—H4B0.840 (3)
C8—O3—H3A110 (2)H9A—C9—H9C109.5
C1—N1—H1A119.3 (18)H9B—C9—H9C109.5
C1—N1—H1B121.2 (18)O4—C10—C9109.7 (8)
H1A—N1—H1B119 (2)O4—C10—C11110.9 (7)
O1—C1—N1124.32 (19)C9—C10—C11112.8 (10)
O1—C1—C2118.97 (19)O4—C10—H10A107.8
N1—C1—C2116.71 (19)C9—C10—H10A107.8
C3—C2—C7117.58 (19)C11—C10—H10A107.8
C3—C2—C1121.60 (19)C10—C11—H11A109.5
C7—C2—C1120.79 (19)C10—C11—H11B109.5
C4—C3—C2121.8 (2)H11A—C11—H11B109.5
C4—C3—Br1118.38 (17)C10—C11—H11C109.5
C2—C3—Br1119.85 (16)H11A—C11—H11C109.5
C5—C4—C3118.9 (2)H11B—C11—H11C109.5
C5—C4—H4A120.5C10'—O4'—H4C106 (6)
C3—C4—H4A120.5C10'—C9'—H9D109.5
C6—C5—C4121.02 (19)C10'—C9'—H9E109.5
C6—C5—C8117.7 (2)H9D—C9'—H9E109.5
C4—C5—C8121.3 (2)C10'—C9'—H9F109.5
C5—C6—C7118.9 (2)H9D—C9'—H9F109.5
C5—C6—H6A120.6H9E—C9'—H9F109.5
C7—C6—H6A120.6O4'—C10'—C9'108.5 (13)
C6—C7—C2121.8 (2)O4'—C10'—C11'109.7 (10)
C6—C7—Br2118.33 (17)C9'—C10'—C11'113.5 (14)
C2—C7—Br2119.82 (15)O4'—C10'—H10B108.3
O2—C8—O3124.9 (2)C9'—C10'—H10B108.3
O2—C8—C5122.0 (2)C11'—C10'—H10B108.3
O3—C8—C5113.2 (2)C10'—C11'—H11D109.5
C10—O4—H4B109 (5)C10'—C11'—H11E109.5
C10—C9—H9A109.5H11D—C11'—H11E109.5
C10—C9—H9B109.5C10'—C11'—H11F109.5
H9A—C9—H9B109.5H11D—C11'—H11F109.5
C10—C9—H9C109.5H11E—C11'—H11F109.5
O1—C1—C2—C391.0 (3)C4—C5—C6—C70.9 (3)
N1—C1—C2—C389.3 (3)C8—C5—C6—C7178.9 (2)
O1—C1—C2—C786.7 (3)C5—C6—C7—C20.9 (3)
N1—C1—C2—C793.0 (3)C5—C6—C7—Br2179.53 (16)
C7—C2—C3—C41.3 (3)C3—C2—C7—C60.1 (3)
C1—C2—C3—C4176.4 (2)C1—C2—C7—C6177.6 (2)
C7—C2—C3—Br1178.09 (16)C3—C2—C7—Br2179.40 (16)
C1—C2—C3—Br14.2 (3)C1—C2—C7—Br22.8 (3)
C2—C3—C4—C51.3 (3)C6—C5—C8—O27.2 (3)
Br1—C3—C4—C5178.05 (16)C4—C5—C8—O2170.8 (2)
C3—C4—C5—C60.2 (3)C6—C5—C8—O3173.2 (2)
C3—C4—C5—C8177.7 (2)C4—C5—C8—O38.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O40.84 (1)1.74 (1)2.580 (12)174 (3)
O3—H3A···O40.84 (1)1.72 (2)2.560 (19)173 (3)
N1—H1A···O1i0.88 (1)2.06 (1)2.929 (2)171 (3)
N1—H1B···O2ii0.88 (1)2.08 (1)2.931 (3)164 (3)
O4—H4B···O1iii0.84 (1)2.05 (3)2.802 (11)149 (5)
O4—H4C···O1iii0.84 (1)1.90 (5)2.606 (18)141 (7)
Symmetry codes: (i) x+1, y, z+2; (ii) x+1, y+1, z+1; (iii) x+2, y+1, z+1.
 

Acknowledgements

The authors thank Victor G. Young, Jr (X-Ray Crystallographic Laboratory, University of Minnesota) for assistance with the crystallographic determination, and the Wayland E. Noland Research Fellowship Fund at the University of Minnesota for generous financial support of this project.

References

First citationBlake, C. C. F. & Small, R. W. H. (1972). Acta Cryst. B28, 2201–2206.  CSD CrossRef IUCr Journals Web of Science Google Scholar
First citationBruker (2018). APEX3 and SAINT. Bruker AXS, Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGdaniec, M., Olszewska, T. & Połoński, T. (2004). Acta Cryst. C60, o41–o43.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGulyás, H., Rivilla, I., Curreli, S., Freixa, Z. & van Leeuwen, P. W. N. M. (2015). Catal. Sci. Technol. 5, 3822–3828.  Google Scholar
First citationIzumi, T. & Okamoto, N. (1972). Mem. Chubu Inst. Technol. 8, 139–142.  CAS Google Scholar
First citationKrause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.  Web of Science CSD CrossRef ICSD CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMukherjee, A., Tothadi, S., Chakraborty, S., Ganguly, S. & Desiraju, G. R. (2013). CrystEngComm, 15, 4640–4654.  Web of Science CSD CrossRef CAS Google Scholar
First citationNoland, W. E., Rieger, J. L., Tu, Z. H. & Tritch, K. J. (2017). Acta Cryst. E73, 1743–1746.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRauf, M. K., Badshah, A., Bolte, M. & Saeed, A. (2006). Acta Cryst. E62, o1070–o1071.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds