organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1-[5-(3,5-Di­meth­­oxy­phen­yl)-3-(2-meth­­oxy­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]ethanone

CROSSMARK_Color_square_no_text.svg

aDepartment of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
*Correspondence e-mail: dskoh@dongduk.ac.kr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 20 January 2021; accepted 27 January 2021; online 29 January 2021)

In the title compound, C20H22N2O4, two benzene rings bearing meth­oxy substituents are connected by a central acetyl­pyrazoline ring: the dihedral angle between the benzene rings is 83.7 (1)°. In the crystal, pairwise C—H⋯O hydrogen bonds generate inversion dimers and additional weak C—H⋯O inter­actions link the dimers into chains propagating along the c-axis direction.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Pyrazolines show a broad spectrum of biological activities including anti­cancer (Matiadis & Sagnou, 2020[Matiadis, D. & Sagnou, M. (2020). Int. J. Mol. Sci. 21, 5507.]), Alzheimer drugs (Neudorfer et al., 2014[Neudorfer, C., Shanab, K., Jurik, A., Schreiber, V., Neudorfer, C., Vraka, C., Schirmer, E., Holzer, W., Ecker, G., Mitterhauser, M., Wadsak, W. & Spreitzer, H. (2014). Bioorg. Med. Chem. Lett. 24, 4490-4495.]) and the dual function of anti­malarial and anti­microbial activities (Mishra, et al., 2017[Mishra, V. K., Mishra, M., Kashaw, V. & Kashaw, S. K. (2017). Bioorg. Med. Chem. 25, 1949-1962.]). According to a recent review, pyrazolines have also demonstrated versatile applications in bio-imaging and sensing (Varghese et al., 2017[Varghese, B., Al-Busafi, S. N., Suliman, F. O. & Al-Kindy, S. M. Z. (2017). RSC Adv. 7, 46999-47016.]). In a continuation of our studies of pyrazolines that show a broad range of biological activities (Jung et al. 2015[Jung, H., Ahn, S., Park, M., Yoon, H., Noh, H. J., Kim, S. Y., Yoo, J. S., Koh, D. & Lim, Y. (2015). Magn. Reson. Chem. 53, 383-390.]), the title compound was synthesized and its crystal structure was determined.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. Atom C10 has an S configuration in the arbitrarily chosen asymmetric unit but crystal symmetry generates a racemic mixture. The central pyrazoline ring (N1/N2/C8–C10) connects the two benzene rings (C1–C6 and C11–C16) at carbon atoms 8 and 10, respectively. The dihedral angle between the pyrazoline ring and the C1–C6 benzene ring is 6.25 (2)°, indicating that the rings are close to coplanar. On the other hand, the dihedral angle formed by the pyrazoline ring and the C11–C16 benzene ring is 83.9 (3)°, which indicates that these two rings are almost orthogonal to each other. The dihedral angle between the benzene rings is 83.7 (1)°. There are three meth­oxy groups, which are attached to carbon-atom C1 of the first benzene ring and C13 and C15 of the second. The C18 atom of the meth­oxy group at C15 is essentially co-planar with the benzene ring [C18—O3—C15—C16 = 0.5 (2)°], whereas the C7 and C17 atoms of the meth­oxy groups at C1 and C13 are slightly twisted from the corresponding ring plane with torsion angles C6—C1—O1—C7 = 6.1 (2)° and C14—C13—O2—C17 = −2.7 (3)°, respectively. The acetyl group attached to the pyrazoline ring lies in almost the same plane as the ring [C20—C19—N1—N2 = 0.9 (2)°].

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom-labelling scheme, with displacement ellipsoids drawn at the 30% probability level.

In the crystal, pairs of C10—H10⋯O4 hydrogen bonds generate inversion dimers (Table 1[link], Fig. 2[link]) featuring R22(10) loops and another pair of C—H⋯O hydrogen bonds links the dimers into chains propagating along the c-axis direction (Fig. 3[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O4i 0.99 2.46 3.4340 (18) 167
C5—H5⋯O4ii 0.94 2.59 3.309 (2) 134
Symmetry codes: (i) [-x+1, -y+1, -z]; (ii) x, y, z+1.
[Figure 2]
Figure 2
A view of the dimer formed by pairwise C—H⋯O hydrogen bonds (dashed lines) in the crystal structure of the title compound. For clarity, only those H atoms involved in hydrogen bonding are shown.
[Figure 3]
Figure 3
Part of the crystal structure with hydrogen bonds shown as dashed lines. For clarity, only those H atoms involved in hydrogen bonding are shown.

Synthesis and crystallization

To a solution of 2-meth­oxy­aceto­phenone (600 mg, 4 mmol) in 50 ml of ethanol was added 3,5-di­meth­oxy­benzaldehyde (830 mg, 5 mmol) and the temperature was adjusted to around 277 K in an ice-bath. To the cooled reaction mixture were added 5 ml of 40% aqueous KOH solution, and the reaction mixture was stirred at room temperature for 5 h. This mixture was poured into iced water (100 ml) and was acidified (pH = 3) with 2 N HCl solution to give a precipitate. Filtration and washing with water afforded a crude solid of a chalcone compound, which was recrystallized from ethanol solution. To a solution of the chalcone compound (2 mmol, 596 mg) in 20 ml of anhydrous ethanol was added excess hydrazine monohydrate (0.6 ml of 64–65% solution, 7 mmol) and the solution was refluxed at 362 K for 3 h. The reaction mixture was cooled to room temperature to produce a solid. This solid was recrystallized from an ethanol solution to obtain single crystals of the title compound (m.p. 436–437 K, yield; 62%).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C20H22N2O4
Mr 354.39
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 223
a, b, c (Å) 8.7181 (2), 10.7230 (3), 11.2096 (3)
α, β, γ (°) 113.0348 (10), 91.4395 (12), 107.4022 (11)
V3) 908.09 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.17 × 0.16 × 0.12
 
Data collection
Diffractometer PHOTON 100 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.])
Tmin, Tmax 0.643, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 39068, 4541, 3338
Rint 0.045
(sin θ/λ)max−1) 0.669
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.126, 1.05
No. of reflections 4541
No. of parameters 239
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.31, −0.21
Computer programs: APEX2 and SAINT (Bruker, 2012[Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.]), SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2014/7 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

1-[5-(3,5-Dimethoxyphenyl)-3-(2-methoxyphenyl)-4,5-dihydro-1H-pyrazol-1-yl]ethanone top
Crystal data top
C20H22N2O4Z = 2
Mr = 354.39F(000) = 376
Triclinic, P1Dx = 1.296 Mg m3
a = 8.7181 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.7230 (3) ÅCell parameters from 9964 reflections
c = 11.2096 (3) Åθ = 2.3–28.3°
α = 113.0348 (10)°µ = 0.09 mm1
β = 91.4395 (12)°T = 223 K
γ = 107.4022 (11)°Block, colourless
V = 908.09 (4) Å30.17 × 0.16 × 0.12 mm
Data collection top
PHOTON 100 CMOS
diffractometer
3338 reflections with I > 2σ(I)
φ and ω scansRint = 0.045
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
θmax = 28.4°, θmin = 2.2°
Tmin = 0.643, Tmax = 0.746h = 1111
39068 measured reflectionsk = 1414
4541 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.050P)2 + 0.3528P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
4541 reflectionsΔρmax = 0.31 e Å3
239 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33313 (18)0.31123 (16)0.49923 (14)0.0328 (3)
C20.28231 (17)0.40413 (15)0.46044 (13)0.0290 (3)
C30.20042 (19)0.48741 (17)0.54478 (14)0.0349 (3)
H30.16500.55030.52090.042*
C40.1704 (2)0.47940 (19)0.66259 (16)0.0423 (4)
H40.11430.53570.71740.051*
C50.2233 (2)0.38832 (19)0.69949 (16)0.0439 (4)
H50.20410.38370.78000.053*
C60.3037 (2)0.30458 (18)0.61869 (15)0.0391 (4)
H60.33900.24260.64410.047*
O10.41126 (15)0.23045 (13)0.41477 (11)0.0445 (3)
C70.4509 (3)0.1255 (2)0.4431 (2)0.0658 (6)
H7A0.52530.17200.52560.099*
H7B0.50230.07450.37330.099*
H7C0.35250.05800.44980.099*
C80.30805 (17)0.41521 (15)0.33494 (13)0.0274 (3)
C90.38469 (18)0.32990 (16)0.22753 (13)0.0304 (3)
H9A0.33140.22620.19940.037*
H9B0.50130.35530.25620.037*
C100.35565 (17)0.37553 (15)0.11689 (13)0.0285 (3)
H100.45920.40920.08630.034*
N10.29693 (15)0.49645 (12)0.18619 (11)0.0297 (3)
N20.26272 (15)0.50766 (13)0.31007 (11)0.0298 (3)
C110.22958 (17)0.25555 (14)0.00294 (13)0.0277 (3)
C120.27974 (18)0.17696 (15)0.10909 (14)0.0304 (3)
H120.39070.20190.11720.036*
C130.16453 (19)0.06023 (16)0.21028 (14)0.0339 (3)
C140.00146 (19)0.02227 (16)0.20007 (15)0.0358 (3)
H140.07540.05680.26860.043*
C150.04762 (18)0.10307 (15)0.08643 (15)0.0325 (3)
C160.06497 (18)0.21904 (15)0.01496 (14)0.0312 (3)
H160.03090.27290.09140.037*
O20.22721 (16)0.01188 (13)0.31699 (11)0.0514 (3)
C170.1152 (3)0.1365 (3)0.4194 (2)0.0962 (10)
H17A0.05750.20300.38360.144*
H17B0.17390.18250.48570.144*
H17C0.03780.10910.45860.144*
O30.21162 (13)0.05856 (12)0.08562 (12)0.0446 (3)
C180.2693 (2)0.1386 (2)0.0275 (2)0.0499 (4)
H18A0.22140.13460.10430.075*
H18B0.38700.09780.01560.075*
H18C0.23870.23800.03940.075*
C190.26834 (19)0.58262 (16)0.13306 (14)0.0332 (3)
O40.29910 (15)0.56660 (13)0.02318 (11)0.0439 (3)
C200.1993 (3)0.6953 (2)0.21300 (18)0.0534 (5)
H20A0.27560.78980.23080.080*
H20B0.18050.68790.29530.080*
H20C0.09710.68130.16470.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0332 (8)0.0326 (7)0.0298 (7)0.0082 (6)0.0000 (6)0.0126 (6)
C20.0282 (7)0.0294 (7)0.0249 (7)0.0047 (6)0.0007 (5)0.0106 (6)
C30.0377 (8)0.0367 (8)0.0295 (7)0.0119 (7)0.0055 (6)0.0134 (6)
C40.0450 (9)0.0474 (9)0.0305 (8)0.0142 (8)0.0106 (7)0.0130 (7)
C50.0472 (10)0.0525 (10)0.0286 (8)0.0071 (8)0.0045 (7)0.0209 (7)
C60.0423 (9)0.0426 (9)0.0341 (8)0.0087 (7)0.0006 (7)0.0222 (7)
O10.0607 (8)0.0464 (7)0.0405 (6)0.0301 (6)0.0114 (6)0.0233 (5)
C70.0888 (16)0.0660 (13)0.0723 (14)0.0512 (13)0.0194 (12)0.0398 (12)
C80.0274 (7)0.0261 (7)0.0240 (6)0.0057 (5)0.0009 (5)0.0083 (5)
C90.0329 (7)0.0315 (7)0.0267 (7)0.0121 (6)0.0036 (6)0.0110 (6)
C100.0314 (7)0.0281 (7)0.0246 (7)0.0100 (6)0.0060 (6)0.0095 (6)
N10.0396 (7)0.0269 (6)0.0228 (6)0.0113 (5)0.0067 (5)0.0104 (5)
N20.0375 (7)0.0291 (6)0.0229 (6)0.0112 (5)0.0062 (5)0.0109 (5)
C110.0334 (7)0.0258 (7)0.0256 (7)0.0097 (6)0.0042 (6)0.0126 (6)
C120.0330 (7)0.0290 (7)0.0279 (7)0.0088 (6)0.0060 (6)0.0118 (6)
C130.0429 (9)0.0284 (7)0.0270 (7)0.0105 (6)0.0058 (6)0.0093 (6)
C140.0397 (8)0.0266 (7)0.0341 (8)0.0055 (6)0.0026 (6)0.0105 (6)
C150.0310 (7)0.0285 (7)0.0403 (8)0.0074 (6)0.0028 (6)0.0187 (6)
C160.0339 (8)0.0306 (7)0.0303 (7)0.0117 (6)0.0073 (6)0.0132 (6)
O20.0524 (7)0.0409 (7)0.0345 (6)0.0056 (6)0.0106 (5)0.0036 (5)
C170.0702 (16)0.0801 (17)0.0559 (14)0.0046 (13)0.0155 (12)0.0327 (12)
O30.0308 (6)0.0366 (6)0.0593 (8)0.0054 (5)0.0046 (5)0.0176 (6)
C180.0377 (9)0.0509 (10)0.0661 (12)0.0142 (8)0.0189 (9)0.0296 (10)
C190.0402 (8)0.0308 (7)0.0293 (7)0.0099 (6)0.0061 (6)0.0148 (6)
O40.0623 (8)0.0473 (7)0.0328 (6)0.0228 (6)0.0169 (5)0.0239 (5)
C200.0868 (15)0.0509 (11)0.0473 (10)0.0421 (11)0.0271 (10)0.0305 (9)
Geometric parameters (Å, º) top
C1—O11.3617 (18)N1—N21.3940 (15)
C1—C61.395 (2)C11—C121.3778 (19)
C1—C21.404 (2)C11—C161.395 (2)
C2—C31.398 (2)C12—C131.394 (2)
C2—C81.4746 (19)C12—H120.9400
C3—C41.383 (2)C13—O21.3744 (18)
C3—H30.9400C13—C141.378 (2)
C4—C51.383 (2)C14—C151.394 (2)
C4—H40.9400C14—H140.9400
C5—C61.375 (2)C15—O31.3668 (18)
C5—H50.9400C15—C161.382 (2)
C6—H60.9400C16—H160.9400
O1—C71.412 (2)O2—C171.421 (2)
C7—H7A0.9700C17—H17A0.9700
C7—H7B0.9700C17—H17B0.9700
C7—H7C0.9700C17—H17C0.9700
C8—N21.2891 (18)O3—C181.427 (2)
C8—C91.5090 (19)C18—H18A0.9700
C9—C101.5411 (19)C18—H18B0.9700
C9—H9A0.9800C18—H18C0.9700
C9—H9B0.9800C19—O41.2236 (17)
C10—N11.4749 (17)C19—C201.497 (2)
C10—C111.5141 (19)C20—H20A0.9700
C10—H100.9900C20—H20B0.9700
N1—C191.3534 (19)C20—H20C0.9700
O1—C1—C6123.01 (14)C8—N2—N1108.20 (11)
O1—C1—C2116.47 (13)C12—C11—C16120.38 (13)
C6—C1—C2120.52 (14)C12—C11—C10119.43 (12)
C3—C2—C1117.68 (13)C16—C11—C10120.06 (12)
C3—C2—C8119.07 (13)C11—C12—C13119.39 (14)
C1—C2—C8123.24 (13)C11—C12—H12120.3
C4—C3—C2121.49 (15)C13—C12—H12120.3
C4—C3—H3119.3O2—C13—C14124.09 (14)
C2—C3—H3119.3O2—C13—C12114.83 (14)
C3—C4—C5119.82 (15)C14—C13—C12121.07 (14)
C3—C4—H4120.1C13—C14—C15118.92 (14)
C5—C4—H4120.1C13—C14—H14120.5
C6—C5—C4120.19 (14)C15—C14—H14120.5
C6—C5—H5119.9O3—C15—C16124.38 (14)
C4—C5—H5119.9O3—C15—C14114.83 (13)
C5—C6—C1120.29 (15)C16—C15—C14120.79 (14)
C5—C6—H6119.9C15—C16—C11119.44 (13)
C1—C6—H6119.9C15—C16—H16120.3
C1—O1—C7118.67 (14)C11—C16—H16120.3
O1—C7—H7A109.5C13—O2—C17116.73 (15)
O1—C7—H7B109.5O2—C17—H17A109.5
H7A—C7—H7B109.5O2—C17—H17B109.5
O1—C7—H7C109.5H17A—C17—H17B109.5
H7A—C7—H7C109.5O2—C17—H17C109.5
H7B—C7—H7C109.5H17A—C17—H17C109.5
N2—C8—C2118.77 (12)H17B—C17—H17C109.5
N2—C8—C9113.69 (12)C15—O3—C18117.33 (13)
C2—C8—C9127.53 (12)O3—C18—H18A109.5
C8—C9—C10102.65 (11)O3—C18—H18B109.5
C8—C9—H9A111.2H18A—C18—H18B109.5
C10—C9—H9A111.2O3—C18—H18C109.5
C8—C9—H9B111.2H18A—C18—H18C109.5
C10—C9—H9B111.2H18B—C18—H18C109.5
H9A—C9—H9B109.2O4—C19—N1119.79 (14)
N1—C10—C11111.67 (12)O4—C19—C20122.44 (14)
N1—C10—C9101.24 (10)N1—C19—C20117.77 (13)
C11—C10—C9112.00 (11)C19—C20—H20A109.5
N1—C10—H10110.5C19—C20—H20B109.5
C11—C10—H10110.5H20A—C20—H20B109.5
C9—C10—H10110.5C19—C20—H20C109.5
C19—N1—N2122.73 (12)H20A—C20—H20C109.5
C19—N1—C10124.12 (11)H20B—C20—H20C109.5
N2—N1—C10113.02 (11)
O1—C1—C2—C3179.43 (13)C19—N1—N2—C8177.84 (13)
C6—C1—C2—C30.7 (2)C10—N1—N2—C86.23 (16)
O1—C1—C2—C80.8 (2)N1—C10—C11—C12145.36 (13)
C6—C1—C2—C8179.33 (14)C9—C10—C11—C12101.88 (15)
C1—C2—C3—C40.2 (2)N1—C10—C11—C1638.83 (17)
C8—C2—C3—C4178.85 (14)C9—C10—C11—C1673.92 (16)
C2—C3—C4—C50.6 (2)C16—C11—C12—C130.2 (2)
C3—C4—C5—C60.8 (3)C10—C11—C12—C13175.58 (13)
C4—C5—C6—C10.3 (3)C11—C12—C13—O2179.32 (13)
O1—C1—C6—C5179.62 (15)C11—C12—C13—C140.0 (2)
C2—C1—C6—C50.5 (2)O2—C13—C14—C15179.53 (14)
C6—C1—O1—C76.1 (2)C12—C13—C14—C150.2 (2)
C2—C1—O1—C7174.01 (16)C13—C14—C15—O3179.30 (13)
C3—C2—C8—N24.0 (2)C13—C14—C15—C160.3 (2)
C1—C2—C8—N2177.35 (14)O3—C15—C16—C11179.44 (13)
C3—C2—C8—C9176.46 (14)C14—C15—C16—C110.1 (2)
C1—C2—C8—C92.2 (2)C12—C11—C16—C150.1 (2)
N2—C8—C9—C107.73 (16)C10—C11—C16—C15175.64 (13)
C2—C8—C9—C10172.73 (13)C14—C13—O2—C172.7 (3)
C8—C9—C10—N110.06 (13)C12—C13—O2—C17176.6 (2)
C8—C9—C10—C11109.04 (12)C16—C15—O3—C180.5 (2)
C11—C10—N1—C1967.02 (17)C14—C15—O3—C18179.07 (14)
C9—C10—N1—C19173.65 (13)N2—N1—C19—O4179.14 (14)
C11—C10—N1—N2108.85 (13)C10—N1—C19—O43.7 (2)
C9—C10—N1—N210.49 (15)N2—N1—C19—C200.9 (2)
C2—C8—N2—N1179.04 (12)C10—N1—C19—C20176.37 (15)
C9—C8—N2—N11.37 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O4i0.992.463.4340 (18)167
C5—H5···O4ii0.942.593.309 (2)134
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1.
 

Funding information

The authors acknowledge financial support from the Basic Science Research Program (award No. NRF-2019R1F1A1058747).

References

First citationBruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationJung, H., Ahn, S., Park, M., Yoon, H., Noh, H. J., Kim, S. Y., Yoo, J. S., Koh, D. & Lim, Y. (2015). Magn. Reson. Chem. 53, 383–390.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMatiadis, D. & Sagnou, M. (2020). Int. J. Mol. Sci. 21, 5507.  CrossRef Google Scholar
First citationMishra, V. K., Mishra, M., Kashaw, V. & Kashaw, S. K. (2017). Bioorg. Med. Chem. 25, 1949–1962.  Web of Science CrossRef CAS PubMed Google Scholar
First citationNeudorfer, C., Shanab, K., Jurik, A., Schreiber, V., Neudorfer, C., Vraka, C., Schirmer, E., Holzer, W., Ecker, G., Mitterhauser, M., Wadsak, W. & Spreitzer, H. (2014). Bioorg. Med. Chem. Lett. 24, 4490–4495.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationVarghese, B., Al-Busafi, S. N., Suliman, F. O. & Al-Kindy, S. M. Z. (2017). RSC Adv. 7, 46999–47016.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds