organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

11,11-Di­phenyl-11H-indeno­[1,2-b]quinoxaline

CROSSMARK_Color_square_no_text.svg

aSchool of Biology and Environment, Nanjing Polytechnic Institute, Nanjing 210048, People's Republic of China, and bTargeted MRI Contrast Agents Laboratory of Jiangsu Province, Nanjing Polytechnic Institute, Nanjing 210048, People's Republic of China
*Correspondence e-mail: njutshs@126.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 3 August 2020; accepted 2 September 2020; online 8 September 2020)

In the title compound, C27H18N2, the mean planes of the pendant benzene rings are approximately perpendicular to one another, making a dihedral angle of 79.3 (5)°; the indeno­[1,2-b]quinoxaline ring system (r.m.s. deviation = 0.1197 Å) is twisted with respect to the pendant benzene rings by 70.0 (4) and 67.6 (3)°. Weak aromatic ππ stacking [centroid–centroid separation = 3.628 (2) Å] and C—H⋯π inter­actions occur in the crystal.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Some quinoxaline-based N-heteroacenes show a narrow band-gap, high thermal stability and aligned film morphology, which can be applied as the hole transport layers in quantum dot light-emitting diodes (QLEDs) (Bai et al., 2015[Bai, L., Yang, X., Ang, C. Y., Nguyen, K. T., Ding, T., Bose, P., Gao, Q., Mandal, A. K., Sun, X. W., Demir, H. V. & Zhao, Y. (2015). Nanoscale, 7, 11531-11535.]). As part of our work in this area, we now report the synthesis and crystal structure of the title indeno­[1,2-b]quinoxaline derivative.

The mol­ecular structure of the title compound is shown in Fig. 1[link]. The pendant C1–C6 and C8–C13 benzene rings are nearly perpendicular to one another [dihedral angle = 79.3 (5)°] while the indeno­[1,2-b]quinoxaline fused ring system (N1–N2/C7,C14–C27) is twisted with respect to the C1–C6 and C8–C13 benzene rings, subtending dihedral angles of 70.0 (4) and 67.6 (3)°, respectively.

[Figure 1]
Figure 1
The mol­ecular structure of the title mol­ecule with displacement ellipsoids drawn at the 30% probability level.

In the crystal, weak Cg6⋯Cg6i aromatic ππ stacking inter­actions [centroid–centroid separation = 3.628 (2), slippage = 1.717 Å, symmetry code: (i) = 1 − x, 1 − y, 1 − z; where Cg6 is the centroid of the C22–C27 benzene ring] link the mol­ecules into inversion dimers and weak C—H⋯π inter­actions link the dimers (Table 1[link], Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the N1/N2/C20–C23 and C1–C6 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯Cg2i 0.93 2.92 3.728 (2) 145
C25—H25⋯Cg3ii 0.93 2.96 3.830 (3) 156
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+1.
[Figure 2]
Figure 2
A packing diagram of the title compound.

Synthesis and crystallization

The title compound was prepared in three steps. In the first step, a mixture of 1H-indene-1,2,3-trione (3.20 g, 20 mmol) and benzene-1,2-di­amine (2.16 g, 20 mmol) in ethanol (100 ml) was heated to reflux under stirring for 5 h. 11H-Indeno­[1,2-b]quinoxalin-11-one (1) was obtained as yellow powder by filtering after cooling. Then, a solution of compound 1 (2.32 g, 10 mmol) in THF (30 ml) was added dropwise into a solution of phenyl­magnesium bromide (2.17 g, 12 mmol) in THF (30 ml). The mixture was heated to reflux with stirring for 12 h. This reaction was quenched by a saturated solution of NH4Cl and the inter­mediate 11-phenyl-11H-indeno­[1,2-b]quinoxalin-11-ol (2) was obtained by flash chromatography. In the last step, tri­fluoro­acetic acid (7 ml) was added dropwise to a solution of compound 2 (0.58 g, 2.50 mmol) in benzene (3 ml) and the mixture was heated at 50°C for 12 h. Then, the reaction mixture was transferred to an ice bath and NaOH was used to increase the pH of the solution to 10. After the reaction, DCM was used to extract the product and Na2SO4 was used as desiccant. The crude product was purified by flash chromatography to obtain a yellow powder product of the title compound. The total yield was about 15%. Single crystals of the title compound suitable for X-ray data collection were obtained by the slow evaporation of a methanol solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C27H18N2
Mr 370.43
Crystal system, space group Monoclinic, P21/n
Temperature (K) 296
a, b, c (Å) 9.642 (5), 11.407 (5), 17.858 (8)
β (°) 103.606 (5)
V3) 1909.0 (16)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.20 × 0.20 × 0.10
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.859, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11621, 4429, 3277
Rint 0.023
(sin θ/λ)max−1) 0.653
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.108, 1.03
No. of reflections 4429
No. of parameters 262
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.15, −0.20
Computer programs: APEX2 (Bruker, 2007[Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]), SAINT (Bruker, 2004[Bruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: ShelXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

11,11-Diphenyl-11H-indeno[1,2-b]quinoxaline top
Crystal data top
C27H18N2F(000) = 776
Mr = 370.43Dx = 1.289 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.642 (5) ÅCell parameters from 3937 reflections
b = 11.407 (5) Åθ = 2.4–27.4°
c = 17.858 (8) ŵ = 0.08 mm1
β = 103.606 (5)°T = 296 K
V = 1909.0 (16) Å3Block, colourless
Z = 40.20 × 0.20 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
3277 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω scansθmax = 27.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1212
Tmin = 0.859, Tmax = 1.000k = 1414
11621 measured reflectionsl = 2318
4429 independent reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.108 w = 1/[σ2(Fo2) + (0.0447P)2 + 0.3316P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
4429 reflectionsΔρmax = 0.15 e Å3
262 parametersΔρmin = 0.20 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H atoms were placed geometrically (C—H = 0.93 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.51226 (11)0.55738 (9)0.65772 (6)0.0394 (3)
N20.23762 (11)0.47436 (9)0.57474 (6)0.0395 (3)
C10.5462 (2)1.01277 (15)0.63861 (11)0.0695 (5)
H10.58401.07860.62000.083*
C20.4016 (2)0.99914 (15)0.62609 (11)0.0716 (5)
H20.34101.05650.59950.086*
C30.34490 (17)0.90057 (13)0.65275 (9)0.0541 (4)
H30.24640.89230.64390.065*
C40.43262 (13)0.81433 (11)0.69233 (7)0.0375 (3)
C50.57958 (15)0.83006 (12)0.70533 (9)0.0495 (3)
H50.64090.77340.73220.059*
C60.63502 (18)0.92863 (14)0.67879 (11)0.0631 (4)
H60.73340.93820.68820.076*
C70.37522 (12)0.70131 (11)0.72101 (7)0.0350 (3)
C80.44723 (13)0.67853 (11)0.80551 (7)0.0382 (3)
C90.45826 (15)0.76998 (14)0.85801 (8)0.0495 (3)
H90.42750.84450.84050.059*
C100.51424 (17)0.75184 (17)0.93576 (9)0.0620 (4)
H100.51910.81350.97040.074*
C110.56268 (18)0.64278 (19)0.96174 (10)0.0707 (5)
H110.60050.63041.01400.085*
C120.55541 (18)0.55199 (17)0.91067 (10)0.0667 (5)
H120.59040.47860.92840.080*
C130.49617 (15)0.56892 (13)0.83284 (9)0.0504 (4)
H130.48930.50630.79880.060*
C140.21179 (13)0.70151 (11)0.70965 (7)0.0363 (3)
C150.12920 (14)0.76476 (12)0.74945 (8)0.0450 (3)
H150.17170.81720.78790.054*
C160.01721 (15)0.74878 (13)0.73120 (9)0.0486 (3)
H160.07270.79070.75800.058*
C170.08276 (14)0.67165 (13)0.67389 (9)0.0486 (3)
H170.18140.66300.66220.058*
C180.00211 (14)0.60742 (12)0.63394 (8)0.0434 (3)
H180.04540.55550.59530.052*
C190.14523 (13)0.62214 (11)0.65281 (7)0.0358 (3)
C200.25545 (13)0.55958 (10)0.62526 (7)0.0345 (3)
C210.39212 (13)0.60103 (10)0.66650 (7)0.0345 (3)
C220.49792 (14)0.46536 (11)0.60637 (7)0.0382 (3)
C230.36232 (14)0.42444 (11)0.56559 (7)0.0378 (3)
C240.35458 (17)0.32749 (12)0.51582 (8)0.0483 (3)
H240.26610.29930.48940.058*
C250.47617 (18)0.27492 (13)0.50633 (9)0.0547 (4)
H250.47010.21150.47300.066*
C260.61001 (17)0.31559 (13)0.54628 (9)0.0547 (4)
H260.69210.27870.53940.066*
C270.62156 (15)0.40861 (12)0.59517 (9)0.0481 (3)
H270.71120.43480.62130.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0374 (6)0.0388 (6)0.0444 (6)0.0031 (5)0.0144 (5)0.0002 (5)
N20.0425 (6)0.0388 (6)0.0375 (6)0.0012 (5)0.0099 (5)0.0035 (5)
C10.0864 (13)0.0474 (9)0.0773 (12)0.0137 (9)0.0241 (10)0.0124 (9)
C20.0785 (12)0.0502 (9)0.0802 (13)0.0038 (9)0.0069 (10)0.0227 (9)
C30.0501 (8)0.0495 (8)0.0577 (9)0.0020 (7)0.0027 (7)0.0076 (7)
C40.0425 (7)0.0346 (6)0.0354 (7)0.0000 (5)0.0093 (5)0.0031 (5)
C50.0438 (8)0.0458 (8)0.0601 (9)0.0000 (6)0.0143 (7)0.0061 (7)
C60.0559 (9)0.0569 (10)0.0786 (12)0.0120 (8)0.0201 (8)0.0063 (9)
C70.0323 (6)0.0350 (6)0.0380 (7)0.0017 (5)0.0088 (5)0.0035 (5)
C80.0323 (6)0.0451 (7)0.0379 (7)0.0007 (5)0.0097 (5)0.0017 (6)
C90.0470 (8)0.0578 (9)0.0422 (8)0.0025 (7)0.0076 (6)0.0065 (7)
C100.0554 (9)0.0887 (13)0.0408 (9)0.0076 (9)0.0087 (7)0.0100 (8)
C110.0606 (10)0.1086 (15)0.0401 (9)0.0102 (10)0.0062 (7)0.0181 (10)
C120.0644 (11)0.0752 (12)0.0589 (11)0.0029 (9)0.0113 (8)0.0293 (9)
C130.0507 (8)0.0505 (8)0.0513 (9)0.0006 (7)0.0146 (7)0.0102 (7)
C140.0349 (6)0.0364 (6)0.0381 (7)0.0029 (5)0.0095 (5)0.0006 (5)
C150.0424 (7)0.0459 (7)0.0473 (8)0.0032 (6)0.0116 (6)0.0110 (6)
C160.0426 (7)0.0523 (8)0.0544 (9)0.0082 (6)0.0183 (6)0.0072 (7)
C170.0327 (7)0.0566 (8)0.0568 (9)0.0031 (6)0.0108 (6)0.0035 (7)
C180.0368 (7)0.0460 (7)0.0460 (8)0.0004 (6)0.0068 (6)0.0057 (6)
C190.0350 (6)0.0361 (6)0.0365 (7)0.0025 (5)0.0088 (5)0.0001 (5)
C200.0363 (6)0.0336 (6)0.0341 (7)0.0010 (5)0.0093 (5)0.0012 (5)
C210.0368 (6)0.0324 (6)0.0357 (6)0.0013 (5)0.0114 (5)0.0015 (5)
C220.0446 (7)0.0339 (6)0.0398 (7)0.0043 (5)0.0174 (6)0.0052 (5)
C230.0465 (7)0.0356 (6)0.0335 (7)0.0049 (5)0.0137 (5)0.0031 (5)
C240.0601 (9)0.0433 (7)0.0426 (8)0.0030 (6)0.0143 (6)0.0052 (6)
C250.0788 (11)0.0408 (8)0.0509 (9)0.0103 (7)0.0278 (8)0.0044 (7)
C260.0614 (9)0.0458 (8)0.0657 (10)0.0147 (7)0.0324 (8)0.0033 (7)
C270.0457 (8)0.0454 (8)0.0582 (9)0.0069 (6)0.0225 (7)0.0040 (7)
Geometric parameters (Å, º) top
N1—C211.3038 (16)C11—C121.371 (3)
N1—C221.3791 (17)C12—H120.9300
N2—C201.3099 (16)C12—C131.386 (2)
N2—C231.3744 (17)C13—H130.9300
C1—H10.9300C14—C151.3878 (18)
C1—C21.368 (3)C14—C191.3984 (18)
C1—C61.371 (2)C15—H150.9300
C2—H20.9300C15—C161.384 (2)
C2—C31.383 (2)C16—H160.9300
C3—H30.9300C16—C171.384 (2)
C3—C41.3790 (19)C17—H170.9300
C4—C51.3925 (19)C17—C181.3826 (19)
C4—C71.5375 (18)C18—H180.9300
C5—H50.9300C18—C191.3909 (19)
C5—C61.376 (2)C19—C201.4583 (17)
C6—H60.9300C20—C211.4303 (18)
C7—C81.5276 (19)C22—C231.4176 (19)
C7—C141.5408 (18)C22—C271.4116 (18)
C7—C211.5353 (17)C23—C241.4097 (18)
C8—C91.390 (2)C24—H240.9300
C8—C131.384 (2)C24—C251.362 (2)
C9—H90.9300C25—H250.9300
C9—C101.382 (2)C25—C261.399 (2)
C10—H100.9300C26—H260.9300
C10—C111.371 (3)C26—C271.362 (2)
C11—H110.9300C27—H270.9300
C21—N1—C22114.68 (11)C12—C13—H13119.8
C20—N2—C23114.37 (11)C15—C14—C7128.73 (12)
C2—C1—H1120.2C15—C14—C19119.19 (12)
C2—C1—C6119.53 (15)C19—C14—C7112.03 (10)
C6—C1—H1120.2C14—C15—H15120.4
C1—C2—H2119.8C16—C15—C14119.16 (13)
C1—C2—C3120.42 (16)C16—C15—H15120.4
C3—C2—H2119.8C15—C16—H16119.3
C2—C3—H3119.6C15—C16—C17121.38 (12)
C4—C3—C2120.81 (15)C17—C16—H16119.3
C4—C3—H3119.6C16—C17—H17119.9
C3—C4—C5118.09 (13)C18—C17—C16120.25 (13)
C3—C4—C7122.92 (12)C18—C17—H17119.9
C5—C4—C7118.97 (11)C17—C18—H18120.7
C4—C5—H5119.7C17—C18—C19118.52 (13)
C6—C5—C4120.69 (14)C19—C18—H18120.7
C6—C5—H5119.7C14—C19—C20108.37 (11)
C1—C6—C5120.45 (16)C18—C19—C14121.48 (11)
C1—C6—H6119.8C18—C19—C20130.03 (12)
C5—C6—H6119.8N2—C20—C19127.41 (11)
C4—C7—C14113.08 (10)N2—C20—C21123.76 (11)
C8—C7—C4110.86 (10)C21—C20—C19108.72 (11)
C8—C7—C14110.09 (10)N1—C21—C7126.20 (11)
C8—C7—C21114.09 (10)N1—C21—C20123.29 (12)
C21—C7—C4108.26 (10)C20—C21—C7110.51 (10)
C21—C7—C14100.11 (9)N1—C22—C23121.89 (11)
C9—C8—C7118.92 (12)N1—C22—C27119.16 (12)
C13—C8—C7122.69 (12)C27—C22—C23118.94 (13)
C13—C8—C9118.32 (13)N2—C23—C22121.97 (12)
C8—C9—H9119.5N2—C23—C24118.80 (12)
C10—C9—C8121.01 (15)C24—C23—C22119.20 (12)
C10—C9—H9119.5C23—C24—H24119.9
C9—C10—H10120.1C25—C24—C23120.28 (14)
C11—C10—C9119.83 (16)C25—C24—H24119.9
C11—C10—H10120.1C24—C25—H25119.7
C10—C11—H11120.0C24—C25—C26120.55 (14)
C10—C11—C12120.03 (16)C26—C25—H25119.7
C12—C11—H11120.0C25—C26—H26119.6
C11—C12—H12119.8C27—C26—C25120.79 (14)
C11—C12—C13120.41 (16)C27—C26—H26119.6
C13—C12—H12119.8C22—C27—H27119.9
C8—C13—C12120.35 (15)C26—C27—C22120.24 (14)
C8—C13—H13119.8C26—C27—H27119.9
C6—C1—C2—C30.9 (3)C17—C18—C19—C141.3 (2)
C1—C2—C3—C40.0 (3)C17—C18—C19—C20174.12 (13)
C2—C3—C4—C50.7 (2)C15—C14—C19—C181.67 (19)
C2—C3—C4—C7178.05 (15)C7—C14—C19—C18179.30 (11)
C3—C4—C5—C60.5 (2)C15—C14—C19—C20174.64 (11)
C7—C4—C5—C6178.31 (14)C7—C14—C19—C202.99 (14)
C2—C1—C6—C51.1 (3)C23—N2—C20—C211.74 (17)
C4—C5—C6—C10.4 (3)C23—N2—C20—C19173.95 (11)
C3—C4—C7—C8131.10 (13)C18—C19—C20—N20.7 (2)
C5—C4—C7—C850.19 (15)C14—C19—C20—N2176.62 (12)
C3—C4—C7—C21103.05 (14)C18—C19—C20—C21175.49 (13)
C5—C4—C7—C2175.66 (14)C14—C19—C20—C210.40 (14)
C3—C4—C7—C146.91 (17)C22—N1—C21—C201.39 (17)
C5—C4—C7—C14174.37 (11)C22—N1—C21—C7178.39 (11)
C21—C7—C8—C1313.19 (16)N2—C20—C21—N10.19 (19)
C4—C7—C8—C13135.71 (13)C19—C20—C21—N1176.19 (11)
C14—C7—C8—C1398.41 (14)N2—C20—C21—C7180.00 (11)
C21—C7—C8—C9169.96 (11)C19—C20—C21—C73.62 (13)
C4—C7—C8—C947.44 (15)C8—C7—C21—N157.34 (16)
C14—C7—C8—C978.44 (14)C4—C7—C21—N166.59 (15)
C13—C8—C9—C101.1 (2)C14—C7—C21—N1174.85 (12)
C7—C8—C9—C10175.84 (12)C8—C7—C21—C20122.46 (11)
C8—C9—C10—C111.4 (2)C4—C7—C21—C20113.61 (11)
C9—C10—C11—C120.1 (3)C14—C7—C21—C204.95 (12)
C10—C11—C12—C131.5 (3)C21—N1—C22—C27177.33 (11)
C9—C8—C13—C120.4 (2)C21—N1—C22—C231.35 (17)
C7—C8—C13—C12177.30 (13)C20—N2—C23—C24176.38 (11)
C11—C12—C13—C81.8 (2)C20—N2—C23—C221.72 (17)
C8—C7—C14—C1552.10 (17)N1—C22—C23—N20.21 (19)
C21—C7—C14—C15172.54 (13)C27—C22—C23—N2178.89 (11)
C4—C7—C14—C1572.51 (17)N1—C22—C23—C24177.89 (11)
C8—C7—C14—C19125.24 (12)C27—C22—C23—C240.79 (18)
C21—C7—C14—C194.80 (13)N2—C23—C24—C25179.05 (13)
C4—C7—C14—C19110.15 (12)C22—C23—C24—C250.9 (2)
C19—C14—C15—C160.8 (2)C23—C24—C25—C260.6 (2)
C7—C14—C15—C16177.99 (13)C24—C25—C26—C270.2 (2)
C14—C15—C16—C170.4 (2)C25—C26—C27—C220.1 (2)
C15—C16—C17—C180.7 (2)N1—C22—C27—C26178.29 (12)
C16—C17—C18—C190.1 (2)C23—C22—C27—C260.4 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the N1/N2/C20–C23 and C1–C6 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15···Cg2i0.932.923.728 (2)145
C25—H25···Cg3ii0.932.963.830 (3)156
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

Funding information

Funding for this research was provided by: Natural Science Foundation of Jiangsu Province (grant No. BK20181486); Natural Science Foundation of the Jiangsu Higher Education Institutions (grant No. 17KJB320001); Overseas Training Program for Excellent Young Teachers and Principals of Jiangsu Province; Qing Lan Project of Jiangsu Province.

References

First citationBai, L., Yang, X., Ang, C. Y., Nguyen, K. T., Ding, T., Bose, P., Gao, Q., Mandal, A. K., Sun, X. W., Demir, H. V. & Zhao, Y. (2015). Nanoscale, 7, 11531–11535.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBruker (2004). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds