organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­propyl­ammonium 4-amino­benzene­sulfonate

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Téchniques, Université Cheikh Anta Diop, Dakar, Senegal, bLaboratoire de Chimie et de Physique des Matériaux (LCPM) de l'Université Assane, Seck de Ziguinchor (UASZ), BP 523 Ziguinchor, Senegal, and cService Commun d'Analyse par Diffraction des Rayons X, Université de Bretagne Occidentale, 6, avenue Victor Le Gorgeu, CS 93837, F-29238 BREST cedex 3, France
*Correspondence e-mail: bouks89@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 13 April 2020; accepted 16 May 2020; online 29 May 2020)

In the title mol­ecular salt, NH2(C3H7)2+·[NH2C6H4SO3], the cation displays an extended conformation. In the crystal, anion-to-anion N—H⋯O and N—H⋯(O,O) hydrogen bonds generate (101) layers. Cation-to-anion N—H⋯O hydrogen bonds connect the layers into a three-dimensional network.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Some sulfanilate-based compounds have high optical non-linearity and may be candidates for applications in optoelectronics and photonics in combination with organic cations such as guanidinium (Russell et al., 1994[Russell, V. A., Etter, M. C. & Ward, M. D. (1994). Chem. Mater. 6, 1206-1217.]), tri­ethyl­ammonium (Li et al., 2007[Li, J., Liang, Z.-P. & Guo, H.-M. (2007). Acta Cryst. E63, o2884.]), diiso­propyl­ammonium (Sarr et al., 2016[Sarr, B., Diop, C. A. K., Diop, L., Blanchard, F. & Michaud, F. (2016). IUCrData, 1, x161545.]) and cyclo­hexyl­ammonium (Kama et al., 2019[Kama, A. B., Génois, R., Massuyeau, F., Sidibé, M., Diop, C. A. K. & Gautier, R. (2019). Mater. Lett. 241, 6-9.]). As part of our ongoing studies in this area (Sarr et al., 2016[Sarr, B., Diop, C. A. K., Diop, L., Blanchard, F. & Michaud, F. (2016). IUCrData, 1, x161545.]), we now describe the synthesis and crystal structure of the title mol­ecular salt, which crystallizes in the non-centrosymmetric space group Pn.

The asymmetric unit, shown in Fig. 1[link], consists of one di­propyl­ammonium NH2(C3H7)2+ cation and one 4-amino­benzene­sulfonate [NH2C6H4SO3] anion. The cation adopts an extended structure with a minimum torsion angle of 174.7 (4)° for N2—C10—C11—C12. The involvement of the oxygen atoms of the sulfonate group in the anion as hydrogen-bond acceptors is manifested in a slight difference in the S—O bond lengths [S1—O1 = 1.446 (2), S1—O2 = 1.454 (2), S1—O3 = 1.449 (2) Å]: these data are consistent with those in sulfanilate anions previously reported (Sarr et al., 2016[Sarr, B., Diop, C. A. K., Diop, L., Blanchard, F. & Michaud, F. (2016). IUCrData, 1, x161545.]; Kama et al., 2019[Kama, A. B., Génois, R., Massuyeau, F., Sidibé, M., Diop, C. A. K. & Gautier, R. (2019). Mater. Lett. 241, 6-9.]).

[Figure 1]
Figure 1
The asymmetric unit with displacement ellipsoids drawn at the 50% probability level. The N2—H2B⋯O2 hydrogen bond is shown as a dashed line.

In the extended structure, each sulfanilate anion inter­acts with four neighbours via simple N—H⋯O and bifurcated N—H⋯(O,O) hydrogen bonds (Table 1[link]) to generate (101) layers (Fig. 2[link]). The di­propyl­ammonium cations play the role of bridges between the infinite anion layers via cation-to-anion N—H⋯O hydrogen bonds (Fig. 3[link]) to generate a three-dimensional network. Each sulfanilate anion is thus surrounded by four anions and two cations.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.90 (2) 2.39 (3) 3.196 (4) 149 (4)
N1—H1A⋯O3i 0.90 (2) 2.49 (3) 3.313 (4) 153 (4)
N1—H1B⋯O1ii 0.88 (2) 2.08 (2) 2.940 (4) 165 (4)
N2—H2A⋯O3iii 0.91 (2) 1.91 (2) 2.801 (3) 164 (3)
N2—H2B⋯O2 0.90 (2) 1.95 (3) 2.786 (3) 154 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
A perspective view of an infinite layer, viewed along the a and b axes.
[Figure 3]
Figure 3
The packing viewed along [010].

Synthesis and crystallization

A 1:2 mixture of sulfanilic acid (1.00 g, 5.80 mmol) and di­propyl­ammine (1.16 g, 11.50 mmol) was dissolved in water and the colourless solution obtained was stirred for an hour. After a few days of evaporation in an oven at 333 K, some yellowish crystals were collected from the solution and then dried in air. The IR spectrum and peak assignments are given in the supporting information.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C6H16N+·C6H6NO3S
Mr 274.38
Crystal system, space group Monoclinic, Pn
Temperature (K) 293
a, b, c (Å) 10.2564 (7), 6.5369 (5), 10.9683 (9)
β (°) 95.067 (7)
V3) 732.50 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.22
Crystal size (mm) 0.38 × 0.28 × 0.19
 
Data collection
Diffractometer Agilent Xcalibur, Sapphire2
Absorption correction Multi-scan (SADABS; Bruker, 2008[ Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.669, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 21351, 4018, 3387
Rint 0.149
(sin θ/λ)max−1) 0.699
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.097, 1.17
No. of reflections 4018
No. of parameters 181
No. of restraints 13
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.21, −0.28
Absolute structure Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])
Absolute structure parameter 0.09 (6)
Computer programs: SHELXT (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2020[Spek, A. L. (2020). Acta Cryst. E76, 1-11.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]).

Structural data


Computing details top

Data collection: ?; cell refinement: ?; data reduction: ?; program(s) used to solve structure: ShelXT (Sheldrick, 2015); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009) ORTEP-3 for Windows (Farrugia, 2012) Mercury (Macrae et al., 2020); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009), WinGX (Farrugia, 2012), PLATON (Spek, 2020), enCIFer (Allen et al., 2004).

Dipropylazanium 4-aminobenzenesulfonate top
Crystal data top
C6H16N+·C6H6NO3SF(000) = 296
Mr = 274.38Dx = 1.244 Mg m3
Monoclinic, PnMo Kα radiation, λ = 0.71073 Å
a = 10.2564 (7) ÅCell parameters from 38522 reflections
b = 6.5369 (5) Åθ = 3.5–37.4°
c = 10.9683 (9) ŵ = 0.22 mm1
β = 95.067 (7)°T = 293 K
V = 732.50 (10) Å3Block, clear light colourless
Z = 20.38 × 0.28 × 0.19 mm
Data collection top
Agilent Xcalibur, Sapphire2
diffractometer
3387 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.149
ω scansθmax = 29.8°, θmin = 6.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1314
Tmin = 0.669, Tmax = 0.746k = 99
21351 measured reflectionsl = 1515
4018 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.P)2 + 0.0621P]
where P = (Fo2 + 2Fc2)/3
S = 1.17(Δ/σ)max = 0.003
4018 reflectionsΔρmax = 0.21 e Å3
181 parametersΔρmin = 0.28 e Å3
13 restraintsAbsolute structure: Flack (1983)
34 constraintsAbsolute structure parameter: 0.09 (6)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The C-bound H atoms were geometrically placed and refined as riding atoms. The N-bound H atoms were located in difference maps and their positions were freely refined.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2799 (2)0.3112 (4)0.2052 (2)0.0367 (5)
C20.2417 (3)0.1097 (4)0.2172 (3)0.0445 (6)
H20.2657410.0117330.1619080.053*
C30.1673 (3)0.0538 (4)0.3118 (3)0.0478 (6)
H30.1422300.0820990.3190820.057*
C40.1296 (3)0.1968 (4)0.3958 (2)0.0422 (6)
C50.1670 (3)0.4010 (4)0.3810 (3)0.0437 (6)
H50.1411060.5003530.4345200.052*
C60.2419 (3)0.4561 (4)0.2879 (2)0.0413 (6)
H60.2671710.5917860.2802530.050*
N10.0600 (3)0.1413 (5)0.4919 (3)0.0648 (8)
O10.3872 (3)0.2145 (4)0.0083 (2)0.0685 (7)
O20.4990 (2)0.4606 (4)0.1461 (2)0.0629 (6)
O30.3054 (2)0.5583 (3)0.02517 (18)0.0554 (6)
H1A0.012 (4)0.243 (5)0.520 (4)0.088 (14)*
H1B0.018 (3)0.024 (5)0.488 (4)0.072 (12)*
C70.9403 (4)0.6507 (8)0.1124 (4)0.0829 (12)
H7A0.9095630.6120150.0304210.124*
H7B1.0216410.5826050.1357130.124*
H7C0.9533920.7961030.1160450.124*
C80.8400 (3)0.5899 (5)0.1991 (3)0.0614 (9)
H8A0.8678320.6409960.2802840.074*
H8B0.7570550.6543610.1726440.074*
C90.8201 (3)0.3642 (5)0.2060 (3)0.0530 (7)
H9A0.9017630.2993060.2359200.064*
H9B0.7947550.3114450.1246540.064*
C100.6895 (3)0.0913 (5)0.3018 (3)0.0516 (8)
H10A0.7684160.0216600.3346650.062*
H10B0.6630270.0333850.2219810.062*
C110.5834 (4)0.0585 (5)0.3850 (3)0.0591 (8)
H11A0.5079460.1400330.3559950.071*
H11B0.6136600.1064840.4662700.071*
C120.5419 (4)0.1628 (7)0.3930 (5)0.0802 (12)
H12A0.5123480.2118300.3128300.120*
H12B0.4721650.1735250.4455490.120*
H12C0.6149850.2435290.4258630.120*
N20.7169 (2)0.3125 (4)0.2888 (2)0.0435 (5)
S10.37479 (6)0.38949 (10)0.08711 (6)0.04080 (17)
H2A0.734 (3)0.372 (4)0.364 (2)0.064 (10)*
H2B0.644 (2)0.382 (4)0.264 (3)0.069 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0348 (12)0.0419 (13)0.0332 (11)0.0043 (10)0.0018 (9)0.0014 (9)
C20.0517 (17)0.0382 (13)0.0438 (14)0.0021 (11)0.0060 (12)0.0044 (11)
C30.0528 (16)0.0376 (13)0.0533 (16)0.0064 (12)0.0073 (13)0.0001 (12)
C40.0381 (13)0.0457 (14)0.0427 (13)0.0032 (11)0.0033 (11)0.0007 (11)
C50.0461 (15)0.0431 (14)0.0427 (14)0.0006 (11)0.0087 (12)0.0080 (10)
C60.0455 (14)0.0349 (12)0.0437 (14)0.0006 (10)0.0049 (12)0.0033 (10)
N10.072 (2)0.0622 (18)0.0641 (18)0.0099 (15)0.0292 (16)0.0007 (14)
O10.0877 (17)0.0627 (14)0.0594 (13)0.0110 (13)0.0303 (12)0.0067 (12)
O20.0394 (11)0.0936 (17)0.0546 (12)0.0071 (11)0.0020 (10)0.0245 (12)
O30.0606 (13)0.0637 (13)0.0416 (11)0.0157 (11)0.0023 (10)0.0158 (10)
C70.066 (2)0.116 (3)0.065 (2)0.023 (2)0.0032 (19)0.010 (2)
C80.061 (2)0.073 (2)0.0502 (17)0.0077 (17)0.0041 (16)0.0003 (15)
C90.0443 (16)0.069 (2)0.0448 (15)0.0084 (14)0.0000 (13)0.0059 (13)
C100.058 (2)0.0487 (17)0.0464 (16)0.0045 (13)0.0052 (14)0.0062 (12)
C110.062 (2)0.0575 (19)0.0567 (18)0.0025 (16)0.0017 (16)0.0008 (15)
C120.075 (3)0.068 (2)0.096 (3)0.010 (2)0.000 (2)0.012 (2)
N20.0454 (12)0.0454 (13)0.0383 (11)0.0061 (11)0.0038 (9)0.0062 (10)
S10.0402 (3)0.0483 (3)0.0339 (3)0.0074 (3)0.0033 (2)0.0044 (3)
Geometric parameters (Å, º) top
C1—C21.384 (3)C7—C81.515 (5)
C1—C61.391 (3)C8—H8A0.9700
C1—S11.763 (3)C8—H8B0.9700
C2—H20.9300C8—C91.492 (5)
C2—C31.390 (4)C9—H9A0.9700
C3—H30.9300C9—H9B0.9700
C3—C41.391 (4)C9—N21.493 (4)
C4—C51.402 (4)C10—H10A0.9700
C4—N11.373 (4)C10—H10B0.9700
C5—H50.9300C10—C111.496 (5)
C5—C61.378 (4)C10—N21.483 (4)
C6—H60.9300C11—H11A0.9700
N1—H1A0.90 (2)C11—H11B0.9700
N1—H1B0.88 (2)C11—C121.513 (5)
O1—S11.446 (2)C12—H12A0.9600
O2—S11.454 (2)C12—H12B0.9600
O3—S11.449 (2)C12—H12C0.9600
C7—H7A0.9600N2—H2A0.91 (2)
C7—H7B0.9600N2—H2B0.90 (2)
C7—H7C0.9600
C2—C1—C6119.2 (2)C8—C9—N2111.2 (2)
C2—C1—S1121.7 (2)H9A—C9—H9B108.0
C6—C1—S1119.1 (2)N2—C9—H9A109.4
C1—C2—H2120.0N2—C9—H9B109.4
C1—C2—C3120.0 (3)H10A—C10—H10B108.1
C3—C2—H2120.0C11—C10—H10A109.5
C2—C3—H3119.3C11—C10—H10B109.5
C2—C3—C4121.4 (3)N2—C10—H10A109.5
C4—C3—H3119.3N2—C10—H10B109.5
C3—C4—C5117.9 (2)N2—C10—C11110.7 (3)
N1—C4—C3121.6 (3)C10—C11—H11A108.9
N1—C4—C5120.4 (3)C10—C11—H11B108.9
C4—C5—H5119.6C10—C11—C12113.3 (3)
C6—C5—C4120.7 (2)H11A—C11—H11B107.7
C6—C5—H5119.6C12—C11—H11A108.9
C1—C6—H6119.6C12—C11—H11B108.9
C5—C6—C1120.8 (2)C11—C12—H12A109.5
C5—C6—H6119.6C11—C12—H12B109.5
C4—N1—H1A114 (3)C11—C12—H12C109.5
C4—N1—H1B118 (3)H12A—C12—H12B109.5
H1A—N1—H1B113 (4)H12A—C12—H12C109.5
H7A—C7—H7B109.5H12B—C12—H12C109.5
H7A—C7—H7C109.5C9—N2—H2A112 (2)
H7B—C7—H7C109.5C9—N2—H2B109 (2)
C8—C7—H7A109.5C10—N2—C9115.5 (2)
C8—C7—H7B109.5C10—N2—H2A110.4 (19)
C8—C7—H7C109.5C10—N2—H2B111 (2)
C7—C8—H8A108.9H2A—N2—H2B98 (3)
C7—C8—H8B108.9O1—S1—C1107.05 (13)
H8A—C8—H8B107.7O1—S1—O2113.52 (17)
C9—C8—C7113.2 (3)O1—S1—O3112.81 (14)
C9—C8—H8A108.9O2—S1—C1106.52 (12)
C9—C8—H8B108.9O3—S1—C1106.58 (12)
C8—C9—H9A109.4O3—S1—O2109.88 (15)
C8—C9—H9B109.4
C1—C2—C3—C40.1 (4)C6—C1—S1—O1173.8 (2)
C2—C1—C6—C50.1 (4)C6—C1—S1—O264.5 (2)
C2—C1—S1—O15.8 (3)C6—C1—S1—O352.8 (2)
C2—C1—S1—O2116.0 (2)N1—C4—C5—C6177.1 (3)
C2—C1—S1—O3126.7 (2)C7—C8—C9—N2177.9 (3)
C2—C3—C4—C51.1 (4)C8—C9—N2—C10179.9 (3)
C2—C3—C4—N1177.7 (3)C11—C10—N2—C9179.1 (3)
C3—C4—C5—C61.7 (4)N2—C10—C11—C12174.7 (3)
C4—C5—C6—C11.2 (4)S1—C1—C2—C3179.8 (2)
C6—C1—C2—C30.7 (4)S1—C1—C6—C5179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.90 (2)2.39 (3)3.196 (4)149 (4)
N1—H1A···O3i0.90 (2)2.49 (3)3.313 (4)153 (4)
N1—H1B···O1ii0.88 (2)2.08 (2)2.940 (4)165 (4)
N2—H2A···O3iii0.91 (2)1.91 (2)2.801 (3)164 (3)
N2—H2B···O20.90 (2)1.95 (3)2.786 (3)154 (3)
Symmetry codes: (i) x1/2, y+1, z+1/2; (ii) x1/2, y, z+1/2; (iii) x+1/2, y+1, z+1/2.
 

Acknowledgements

The authors thank the Laboratoire de Chimie Minérale et Analytique, Département de Chimie, Faculté des Sciences et Téchniques, Université Cheikh Anta Diop de Dakar, Sénégal, the Laboratoire de Chimie et de Physique des Matériaux (LCPM) de l'Université Assane Seck de Ziguinchor (UASZ), Sénégal and the Service Commun d'Analyse par Diffraction des Rayons X, Université de Bretagne Occidentale, France for financial support.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citation Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKama, A. B., Génois, R., Massuyeau, F., Sidibé, M., Diop, C. A. K. & Gautier, R. (2019). Mater. Lett. 241, 6–9.  CrossRef CAS Google Scholar
First citationLi, J., Liang, Z.-P. & Guo, H.-M. (2007). Acta Cryst. E63, o2884.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRussell, V. A., Etter, M. C. & Ward, M. D. (1994). Chem. Mater. 6, 1206–1217.  CSD CrossRef CAS Web of Science Google Scholar
First citationSarr, B., Diop, C. A. K., Diop, L., Blanchard, F. & Michaud, F. (2016). IUCrData, 1, x161545.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2020). Acta Cryst. E76, 1–11.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds