research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of [K(18-crown-6)]+2[Pt(CN)4]2−

CROSSMARK_Color_square_no_text.svg

aFreie Universität Berlin, Institut für Chemie und Biochemie - Anorganische Chemie, Fabeckstrasse 34-36, 14195 Berlin, Germany
*Correspondence e-mail: moritz.malischewski@fu-berlin.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 2 October 2019; accepted 12 November 2019; online 15 November 2019)

In the title compound, di-μ-cyanato-1:2κ2N:C;2:3κ2C:N-di­cyanato-2κ2C-bis­(1,4,7,10,13,16-hexa­oxa­cyclo­octa­deca­ne)-1κ6O;3κ6O-1,3-dipotassium(I)-2-platinum(II), [K2Pt(CN)4(C12H24O6)2] or [K(18-crown-6)]2·[Pt(CN)4], two trans-orientated cyano groups of the square-planar [Pt(CN)4]2− dianion (Pt site symmetry [\overline{1}]) bind to one potassium ion each, which are additionally coordinated by the six O atoms of 18-crown-6. No Pt⋯Pt inter­actions occur in the crystal, but very weak Pt⋯H contacts (2.79 Å) are observed.

1. Chemical context

Polycyano­metallates are an important class of inorganic compounds with intriguing properties. As a result of their anionic nature and high nucleophilicity, they have been widely used as metallo-ligands in coordination chemistry. Depending on the geometry of the polycyano­metallate, various topologies can be realized (Alexandrov et al., 2015[Alexandrov, E. V., Virovets, A. V., Blatov, V. A. & Peresypkina, E. V. (2015). Chem. Rev. 115, 12286-12319.]). While photomagnetic effects have been predominantly realized with hexa- and octa­cyano­metallates (Ohkoshi et al., 2012[Ohkoshi, S.-I. & Tokoro, H. (2012). Acc. Chem. Res. 45, 1749-1758.]), studies on tetra­cyano­platinates and their derivatives have focused on the high electrical conductivities of mixed-valent Krogmann's salts K2[Pt(CN)4]Br0.32·2.6H2O (Krogmann, 1969[Krogmann, K. (1969). Angew. Chem. Int. Ed. Engl. 8, 35-42.]), vapochromic sensor materials (e.g. Zn[Pt(CN)4] for ammonia (Varju et al., 2019[Varju, D. R., Wollschlaeger, S. A. & Leznoff, D. B. (2019). Chem. Eur. J. 25, 9017-9025.]) and spin-crossover compounds such as [Fe(pyrazine)][Pt(CN)4]·2H2O (Niel et al., 2001[Niel, V., Martinez-Agudo, J. M., Muñoz, M. C., Gaspar, A. B. & Real, J. A. (2001). Inorg. Chem. 40, 3838-3839.]). However, alkali salts of polycyano­metallates are in generally water-soluble but suffer from insolubility in organic solvents. A general way to increase the solubility of metals salts in organic solvents is the utilization of crown ethers. For example, even potassium permanganate KMnO4 becomes benzene-soluble by coordination of 18-crown-6 to the potassium cation (Doheny & Ganem, 1980[Doheny, A. J. & Ganem, B. (1980). J. Chem. Educ. 57, 308.]). During our attempts to explore the coordination chemistry of the tetra­cyano­platinate dianion [Pt(CN)4]2− in organic solvents, we realized that commercially available K2[Pt(CN)4] is insoluble in di­chloro­methane but dissolves rapidly upon addition of 18-crown-6. The product [K(18-crown-6)]2 [Pt(CN)4], which was already isolated many years ago by a rather complicated procedure (Almeida & Pidcock, 1981[Almeida, J. F. & Pidcock, A. (1981). J. Organomet. Chem. 208, 273-278.]), could now be obtained in crystalline form. In contrast to other tetra­cyano­platinate(II) salts with large organic cations [e.g. PPh4+ (see Nast & Moerler, 1969[Nast, R. & Moerler, H.-D. (1969). Chem. Ber. 102, 2050-2056.]) and NBu4+ (see Mason & Gray, 1968[Mason, W. R. III & Gray, H. B. (1968). J. Am. Chem. Soc. 90, 5721-5729.])], which are prepared by metathesis reactions in water, this new procedure makes the access to tetra­cyano­platinate salts with solubility in organic solvents even more facile.

[Scheme 1]

2. Structural Commentary

[K(18-crown-6)]2 [Pt(CN)4] (Fig. 1[link]) crystallizes in the monoclinic space group P21/n. The tetra­cyano­platinate moiety displays a square-planar mol­ecular geometry with the platinum atom lying on a crystallographic inversion centre. Two trans-orientated cyano groups coordinate via their terminal nitro­gen atoms to the potassium ions in a rather bent fashion [K1—N1—C1 = 146.76 (17)°] while the Pt—C—N bonds are almost linear [Pt1—C2—N2 = 178.81 (18)°]. The Pt—C and C—N bond lengths do not differ significantly between the terminal or bridging cyano ligands [Pt1—C2 = 1.996 (2) Å versus Pt1—C1 = 1.991 (2) Å and C2—N2 = 1.155 (3) Å versus C1—N1 = 1.154 (3) Å]. The six oxygen atoms of the crown ether coordinate to the potassium ion in a hexa­gonal-planar fashion. Additionally, one apical position is occupied by a nitro­gen atom of a cyano group, although the K—N distance is relatively long [2.732 (2) Å]. The potassium ion is located 0.295 Å above the the O6 centroid [K—O distances = 2.769 (1)–2.837 (1) Å].

[Figure 1]
Figure 1
The asymmetric unit of the title compound with displacement ellipsoids shown at the 50% probability level.

3. Supra­molecular features

A common feature of tetra­cyano­platinate salts is the formation of columnar stacks of the planar tetra­cyano­platinate anions with Pt⋯Pt distances in the range of 3.0–3.8 Å, see, for example, Washecheck et al. (1976[Washecheck, D. M., Peterson, S. W., Reis, A. H. Jr & Williams, J. M. (1976). Inorg. Chem. 15, 74-78.]), Holzapfel et al. (1981[Holzapfel, W., Yersin, H. & Gliemann, G. (1981). Z. Kristallogr. 157, 47-67.]), Mühle et al. (2004[Mühle, C., Nuss, J., Dinnebier, R. E. & Jansen, M. (2004). Z. Anorg. Allg. Chem. 630, 1462-1468.]) and Neuhausen et al. (2011[Neuhausen, C., Pattison, P. & Schiltz, M. (2011). CrystEngComm, 13, 430-432.]). However, in the crystal structure of the title compound (Fig. 2[link]), no platino­philic inter­actions are observed. This is in accordance with findings of Stojanovic et al. (2011[Stojanovic, M., Robinson, N. J., Ngo, T. & Sykora, R. E. (2011). J. Chem. Crystallogr. 41, 1425-1432.]) who stated that large organic cations can suppress the formation of Pt⋯Pt contacts. Inter­molecular inter­actions are not very pronounced in this crystal structure. However, the two uncoordinated cyano groups each point towards one neighbouring hydrogen atom in a slightly bent fashion (C—N⋯H = 152°; Table 1[link]) although the N⋯H distance is relatively long (2.55 Å). Moreover, two hydrogen atoms from two different crown ether mol­ecules form weak contacts to the platinum atom in a linear fashion (H⋯Pt⋯H = 180°), which results in a distorted axially elongated pseudo-octa­hedral PtC4H2 coordination environment for the platinum atom. The Pt⋯H distances are slightly smaller than the sum of the van der Waals radii (2.79 Å).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3A⋯N1i 0.99 2.54 3.510 (3) 165
C9—H9B⋯N2ii 0.99 2.55 3.459 (3) 152
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x+1, y, z.
[Figure 2]
Figure 2
Packing in the unit cell of the title compound.

4. Database survey

A database survey (CSD version 5.40, update of November 2018; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) gave 348 hits for the [Pt(CN)4] moiety and 1562 hits for the [K(18-crown-6)] moiety. While the tetra­cyano­platinate moiety binds to many elements from the periodic table, only a few tetra­cyano­platinate salts with metal–crown ether counter-cations are known. For example, complexes of Ba2+ [Pt(CN)4]2− with 18-crown-6 (Olmstead et al., (2005[Olmstead, M. M., Lee, M. A. & Stork, J. R. (2005). Acta Cryst. E61, m1048-m1050.]), dibenzo-18-crown-6 (Olmstead et al., 2016)) and di­aza-18-crown-6 (Olmstead et al., 2009[Olmstead, M. M., Beavers, C. M. & Paw, U. L. (2009). Acta Cryst. E65, m408-m409.]). In the first two examples, the Ba2+ cation exhibits a coordination number of 10 whereas only ninefold coordination is observed in the last case. In general, these high coordination numbers result from bridging cyanide ligands and oxygen-containing donor solvents that bind to the Ba2+ cations. In [Tl(18-crown-6)]2[Pt(CN)4] (Liu et al., 2006[Liu, F.-H., Chen, W.-Z. & Wang, D.-Q. (2006). Chin J. Struct. Chem. 25, 677-680.]), only a sevenfold coordination is observed for the thallium cation. Inter­estingly, Tl+ does not bind to a terminal cyanide group but forms a weak metallophilic contact to Pt2+ (Tl⋯Pt distance = 3.185 Å).

The combination of [K(18-crown-6)] cations with other polycyano­metallates is relatively rare. Crystal structures of [K3(18-crown-6)3(H2O)4][Cr(CN)6]·3H2O (Zhou et al., 2003[Zhou, B.-C., Kou, H.-Z., He, Y., Wang, R.-J., Li, Y.-D. & Wang, H.-G. (2003). Chin. J. Chem. 21, 352-355.]), [K(18-crown-6)]2[K(18-crown-6)(H2O)2][Ru(CN)6]·CH2Cl2 (Vostrikova & Peresypkina, 2011[Vostrikova, K. E. & Peresypkina, E. V. (2011). Eur. J. Inorg. Chem. pp. 811-815.]) and [K(18-crown-6)]2[K(18-crown-6)(C3H7OH)][Os(CN)6]·2C3H7OH·H2O (Vos­tri­kova & Peresypkina, 2011[Vostrikova, K. E. & Peresypkina, E. V. (2011). Eur. J. Inorg. Chem. pp. 811-815.]) have been reported in the literature.

5. Synthesis and crystallization

Potassium tetra­cyano­platinate (37.7 mg, 0.1 mmol) was suspended in 3 ml of CH2Cl2. Then, 52.8 mg (0.2 mmol) of 18-crown-6 were added and the mixture was stirred for several minutes until the solid had completely dissolved. A small part of the solution was placed in a narrow glass tube and layered with diethyl ether. Colourless blocks of the title compound formed overnight. IR(ATR) (cm−1): 2898–2815 [m, v(CH)], 2126 [s, n(CN)], 1451 [w, d(CH2)], 1099 [vs, n(CO)]. 1H NMR (400 MHz in CD2Cl2): 3.62 (s, crown ether) ppm. 13C(1H) NMR (101 MHz in CD2Cl2): 122.4 (CN, 1JPt—C = 1018 Hz), 70.1 (crown) ppm.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were placed geometrically with a constrained C—H distance of 0.99 Å and refined as riding atoms with Uiso(H) = 1.2Ueq(C).

Table 2
Experimental details

Crystal data
Chemical formula [K2Pt(CN)4(C12H24O6)2]
Mr 905.99
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 11.7341 (10), 13.7280 (12), 11.8876 (10)
β (°) 94.999 (3)
V3) 1907.6 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.96
Crystal size (mm) 0.44 × 0.44 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.306, 0.564
No. of measured, independent and observed [I > 2σ(I)] reflections 57788, 5839, 4658
Rint 0.047
(sin θ/λ)max−1) 0.716
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.051, 1.05
No. of reflections 5839
No. of parameters 215
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.25, −1.54
Computer programs: APEX2 and SAINT (Bruker, 2016[Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Computing details top

Data collection: APEX2 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Di-µ-cyanato-1:2κ2N:C;2:3κ2C:N-dicyanato-2κ2C-bis(1,4,7,10,13,16-hexaoxacyclooctadecane)-1κ6O;3κ6O-1,3-dipotassium(I)-2-platinum(II) top
Crystal data top
[K2Pt(CN)4(C12H24O6)2]F(000) = 912
Mr = 905.99Dx = 1.577 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 11.7341 (10) ÅCell parameters from 9630 reflections
b = 13.7280 (12) Åθ = 2.3–30.6°
c = 11.8876 (10) ŵ = 3.96 mm1
β = 94.999 (3)°T = 100 K
V = 1907.6 (3) Å3Block, colourless
Z = 20.44 × 0.44 × 0.12 mm
Data collection top
Bruker APEXII CCD
diffractometer
4658 reflections with I > 2σ(I)
φ and ω scansRint = 0.047
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 30.6°, θmin = 2.3°
Tmin = 0.306, Tmax = 0.564h = 1616
57788 measured reflectionsk = 1919
5839 independent reflectionsl = 1716
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.019 w = 1/[σ2(Fo2) + (0.0186P)2 + 1.9161P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.051(Δ/σ)max = 0.001
S = 1.05Δρmax = 1.25 e Å3
5839 reflectionsΔρmin = 1.54 e Å3
215 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0120 (4)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.5000000.5000000.0000000.01307 (4)
K10.81107 (3)0.50085 (2)0.38736 (3)0.01684 (7)
O50.93998 (11)0.65091 (10)0.29546 (12)0.0220 (3)
O20.71541 (11)0.34705 (10)0.50409 (12)0.0232 (3)
O40.97580 (12)0.45517 (10)0.23439 (12)0.0256 (3)
O30.82893 (12)0.31294 (10)0.30722 (12)0.0254 (3)
O10.68912 (13)0.54392 (11)0.57027 (12)0.0258 (3)
O60.84409 (13)0.68057 (10)0.50316 (12)0.0273 (3)
C20.34516 (17)0.47354 (16)0.05042 (17)0.0234 (4)
N20.25437 (16)0.45768 (17)0.07632 (17)0.0358 (4)
N10.61178 (17)0.50228 (13)0.25023 (17)0.0284 (4)
C90.99412 (18)0.53486 (16)0.15999 (18)0.0268 (4)
H9A0.9226790.5499600.1126610.032*
H9B1.0540510.5178450.1096790.032*
C10.56960 (16)0.50133 (12)0.15887 (17)0.0192 (3)
C50.68672 (17)0.26882 (14)0.42770 (18)0.0265 (4)
H5A0.6281720.2907330.3680650.032*
H5B0.6544140.2140140.4687500.032*
C101.03093 (17)0.62118 (15)0.23170 (19)0.0276 (4)
H10A1.0986250.6037870.2833560.033*
H10B1.0524710.6754600.1829810.033*
C40.61633 (18)0.38299 (16)0.5518 (2)0.0309 (4)
H4A0.5797570.3297340.5918110.037*
H4B0.5604720.4074140.4911360.037*
C60.79142 (17)0.23559 (14)0.37517 (17)0.0250 (4)
H6A0.8523860.2184110.4347050.030*
H6B0.7736140.1771810.3280310.030*
C80.9510 (2)0.36800 (15)0.1721 (2)0.0335 (5)
H8A1.0165170.3504560.1290040.040*
H8B0.8829980.3777670.1179340.040*
C140.7268 (2)0.62271 (15)0.64242 (18)0.0308 (4)
H14A0.7958730.6035220.6911140.037*
H14B0.6661680.6409280.6914470.037*
C110.97505 (19)0.72802 (15)0.37123 (18)0.0295 (4)
H11A1.0029460.7837900.3285150.035*
H11B1.0382430.7055580.4256700.035*
C120.8756 (2)0.75891 (14)0.43299 (19)0.0311 (4)
H12A0.8964080.8168860.4798790.037*
H12B0.8102470.7763590.3783600.037*
C70.9286 (2)0.28768 (15)0.2533 (2)0.0329 (5)
H7A0.9165380.2252580.2122840.039*
H7B0.9948340.2801730.3101860.039*
C30.65005 (18)0.46399 (16)0.63312 (18)0.0280 (4)
H3A0.5835900.4840340.6735360.034*
H3B0.7116030.4417690.6895390.034*
C130.7534 (2)0.70708 (15)0.5689 (2)0.0342 (5)
H13A0.6847200.7246560.5186240.041*
H13B0.7759990.7643360.6162990.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01451 (5)0.01192 (5)0.01299 (6)0.00149 (3)0.00243 (3)0.00065 (3)
K10.01690 (16)0.01710 (16)0.01701 (17)0.00121 (12)0.00425 (13)0.00143 (13)
O50.0216 (6)0.0192 (6)0.0254 (7)0.0033 (5)0.0037 (5)0.0028 (5)
O20.0223 (6)0.0220 (6)0.0260 (7)0.0027 (5)0.0065 (5)0.0029 (5)
O40.0296 (7)0.0201 (7)0.0283 (7)0.0010 (5)0.0104 (6)0.0033 (6)
O30.0289 (7)0.0185 (6)0.0301 (8)0.0011 (5)0.0105 (6)0.0019 (5)
O10.0319 (7)0.0256 (7)0.0213 (7)0.0017 (6)0.0103 (6)0.0027 (6)
O60.0382 (8)0.0194 (6)0.0255 (7)0.0025 (6)0.0099 (6)0.0032 (5)
C20.0251 (9)0.0275 (9)0.0176 (8)0.0004 (7)0.0018 (7)0.0031 (7)
N20.0260 (9)0.0547 (13)0.0273 (9)0.0040 (9)0.0062 (7)0.0055 (9)
N10.0228 (8)0.0430 (11)0.0193 (8)0.0027 (7)0.0013 (7)0.0011 (7)
C90.0278 (10)0.0273 (9)0.0272 (10)0.0016 (8)0.0138 (8)0.0007 (8)
C10.0156 (8)0.0228 (9)0.0193 (8)0.0009 (6)0.0030 (6)0.0009 (6)
C50.0282 (10)0.0226 (9)0.0291 (10)0.0070 (7)0.0052 (8)0.0030 (8)
C100.0202 (9)0.0268 (9)0.0373 (11)0.0026 (7)0.0101 (8)0.0013 (8)
C40.0261 (10)0.0301 (10)0.0390 (12)0.0041 (8)0.0167 (9)0.0026 (9)
C60.0300 (10)0.0180 (8)0.0268 (10)0.0017 (7)0.0020 (8)0.0013 (7)
C80.0426 (12)0.0252 (10)0.0355 (12)0.0025 (9)0.0194 (10)0.0103 (9)
C140.0422 (12)0.0276 (10)0.0243 (10)0.0007 (9)0.0131 (9)0.0070 (8)
C110.0360 (11)0.0226 (9)0.0301 (10)0.0121 (8)0.0037 (8)0.0037 (8)
C120.0475 (13)0.0174 (9)0.0292 (10)0.0060 (8)0.0075 (9)0.0046 (8)
C70.0376 (11)0.0207 (9)0.0427 (13)0.0024 (8)0.0169 (10)0.0080 (9)
C30.0280 (10)0.0310 (10)0.0273 (10)0.0011 (8)0.0162 (8)0.0006 (8)
C130.0496 (13)0.0227 (10)0.0322 (11)0.0032 (9)0.0147 (10)0.0070 (8)
Geometric parameters (Å, º) top
Pt1—C2i1.996 (2)C9—C101.501 (3)
Pt1—C21.996 (2)C5—H5A0.9900
Pt1—C1i1.991 (2)C5—H5B0.9900
Pt1—C11.991 (2)C5—C61.497 (3)
K1—K1ii4.9761 (9)C10—H10A0.9900
K1—O52.8308 (14)C10—H10B0.9900
K1—O22.8133 (14)C4—H4A0.9900
K1—O42.8369 (14)C4—H4B0.9900
K1—O32.7642 (14)C4—C31.503 (3)
K1—O12.7691 (14)C6—H6A0.9900
K1—O62.8354 (14)C6—H6B0.9900
K1—N12.732 (2)C8—H8A0.9900
K1—C43.527 (2)C8—H8B0.9900
O5—C101.422 (2)C8—C71.503 (3)
O5—C111.427 (2)C14—H14A0.9900
O2—C51.428 (2)C14—H14B0.9900
O2—C41.425 (2)C14—C131.500 (3)
O4—C91.435 (3)C11—H11A0.9900
O4—C81.424 (2)C11—H11B0.9900
O3—C61.427 (2)C11—C121.493 (3)
O3—C71.425 (2)C12—H12A0.9900
O1—C141.426 (2)C12—H12B0.9900
O1—C31.426 (3)C7—H7A0.9900
O6—C121.429 (2)C7—H7B0.9900
O6—C131.421 (3)C3—H3A0.9900
C2—N21.155 (3)C3—H3B0.9900
N1—C11.154 (3)C13—H13A0.9900
C9—H9A0.9900C13—H13B0.9900
C9—H9B0.9900
C2i—Pt1—C2180.0O2—C5—H5B109.7
C1—Pt1—C291.47 (8)O2—C5—C6109.75 (16)
C1i—Pt1—C2i91.47 (8)H5A—C5—H5B108.2
C1—Pt1—C2i88.53 (8)C6—C5—H5A109.7
C1i—Pt1—C288.53 (8)C6—C5—H5B109.7
C1i—Pt1—C1180.0O5—C10—C9109.71 (16)
O5—K1—K1ii74.34 (3)O5—C10—H10A109.7
O5—K1—O459.78 (4)O5—C10—H10B109.7
O5—K1—O659.94 (4)C9—C10—H10A109.7
O5—K1—C4160.31 (5)C9—C10—H10B109.7
O2—K1—K1ii96.09 (3)H10A—C10—H10B108.2
O2—K1—O5170.43 (4)K1—C4—H4A159.0
O2—K1—O4118.28 (4)K1—C4—H4B82.0
O2—K1—O6117.20 (4)O2—C4—K149.29 (9)
O2—K1—C422.59 (4)O2—C4—H4A109.8
O4—K1—K1ii73.68 (3)O2—C4—H4B109.8
O4—K1—C4139.85 (5)O2—C4—C3109.49 (17)
O3—K1—K1ii95.19 (3)H4A—C4—H4B108.2
O3—K1—O5119.15 (4)C3—C4—K182.54 (11)
O3—K1—O261.00 (4)C3—C4—H4A109.8
O3—K1—O459.77 (4)C3—C4—H4B109.8
O3—K1—O1121.99 (4)O3—C6—C5108.32 (16)
O3—K1—O6165.50 (5)O3—C6—H6A110.0
O3—K1—C480.51 (5)O3—C6—H6B110.0
O1—K1—K1ii94.33 (3)C5—C6—H6A110.0
O1—K1—O5118.53 (4)C5—C6—H6B110.0
O1—K1—O261.13 (4)H6A—C6—H6B108.4
O1—K1—O4167.99 (5)O4—C8—H8A109.9
O1—K1—O659.40 (4)O4—C8—H8B109.9
O1—K1—C442.15 (5)O4—C8—C7108.77 (18)
O6—K1—K1ii70.44 (3)H8A—C8—H8B108.3
O6—K1—O4115.57 (4)C7—C8—H8A109.9
O6—K1—C4101.40 (5)C7—C8—H8B109.9
N1—K1—K1ii175.95 (5)O1—C14—H14A110.2
N1—K1—O5102.88 (5)O1—C14—H14B110.2
N1—K1—O286.68 (5)O1—C14—C13107.71 (17)
N1—K1—O4102.40 (5)H14A—C14—H14B108.5
N1—K1—O383.55 (5)C13—C14—H14A110.2
N1—K1—O189.59 (5)C13—C14—H14B110.2
N1—K1—O6110.92 (5)O5—C11—H11A109.9
N1—K1—C476.81 (6)O5—C11—H11B109.9
C4—K1—K1ii106.82 (4)O5—C11—C12109.03 (17)
C10—O5—K1116.61 (11)H11A—C11—H11B108.3
C10—O5—C11111.15 (15)C12—C11—H11A109.9
C11—O5—K1115.51 (11)C12—C11—H11B109.9
C5—O2—K1109.45 (11)O6—C12—C11109.03 (17)
C4—O2—K1108.12 (11)O6—C12—H12A109.9
C4—O2—C5110.99 (15)O6—C12—H12B109.9
C9—O4—K1111.94 (11)C11—C12—H12A109.9
C8—O4—K1113.54 (11)C11—C12—H12B109.9
C8—O4—C9110.80 (17)H12A—C12—H12B108.3
C6—O3—K1117.58 (11)O3—C7—C8107.85 (17)
C7—O3—K1118.16 (11)O3—C7—H7A110.1
C7—O3—C6112.30 (15)O3—C7—H7B110.1
C14—O1—K1118.68 (12)C8—C7—H7A110.1
C3—O1—K1117.32 (11)C8—C7—H7B110.1
C3—O1—C14111.44 (16)H7A—C7—H7B108.4
C12—O6—K1113.75 (11)O1—C3—C4108.13 (17)
C13—O6—K1114.36 (12)O1—C3—H3A110.1
C13—O6—C12111.85 (16)O1—C3—H3B110.1
N2—C2—Pt1177.97 (18)C4—C3—H3A110.1
C1—N1—K1146.76 (17)C4—C3—H3B110.1
O4—C9—H9A110.2H3A—C3—H3B108.4
O4—C9—H9B110.2O6—C13—C14109.05 (17)
O4—C9—C10107.64 (17)O6—C13—H13A109.9
H9A—C9—H9B108.5O6—C13—H13B109.9
C10—C9—H9A110.2C14—C13—H13A109.9
C10—C9—H9B110.2C14—C13—H13B109.9
N1—C1—Pt1178.81 (18)H13A—C13—H13B108.3
O2—C5—H5A109.7
Symmetry codes: (i) x+1, y+1, z; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3A···N1iii0.992.543.510 (3)165
C9—H9B···N2iv0.992.553.459 (3)152
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x+1, y, z.
 

Funding information

We acknowledge support by the German Research Foundation and the Open Access Publication Fund of the Freie Universität, Berlin.

References

First citationAlexandrov, E. V., Virovets, A. V., Blatov, V. A. & Peresypkina, E. V. (2015). Chem. Rev. 115, 12286–12319.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAlmeida, J. F. & Pidcock, A. (1981). J. Organomet. Chem. 208, 273–278.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDoheny, A. J. & Ganem, B. (1980). J. Chem. Educ. 57, 308.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHolzapfel, W., Yersin, H. & Gliemann, G. (1981). Z. Kristallogr. 157, 47–67.  CrossRef CAS Web of Science Google Scholar
First citationKrogmann, K. (1969). Angew. Chem. Int. Ed. Engl. 8, 35–42.  CrossRef CAS Web of Science Google Scholar
First citationLiu, F.-H., Chen, W.-Z. & Wang, D.-Q. (2006). Chin J. Struct. Chem. 25, 677–680.  CAS Google Scholar
First citationMason, W. R. III & Gray, H. B. (1968). J. Am. Chem. Soc. 90, 5721–5729.  CrossRef CAS Web of Science Google Scholar
First citationMühle, C., Nuss, J., Dinnebier, R. E. & Jansen, M. (2004). Z. Anorg. Allg. Chem. 630, 1462–1468.  Google Scholar
First citationNast, R. & Moerler, H.-D. (1969). Chem. Ber. 102, 2050–2056.  CrossRef CAS Web of Science Google Scholar
First citationNeuhausen, C., Pattison, P. & Schiltz, M. (2011). CrystEngComm, 13, 430–432.  Web of Science CSD CrossRef CAS Google Scholar
First citationNiel, V., Martinez-Agudo, J. M., Muñoz, M. C., Gaspar, A. B. & Real, J. A. (2001). Inorg. Chem. 40, 3838–3839.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationOhkoshi, S.-I. & Tokoro, H. (2012). Acc. Chem. Res. 45, 1749–1758.  Web of Science CrossRef CAS PubMed Google Scholar
First citationOlmstead, M. M., Beavers, C. M. & Paw, U. L. (2009). Acta Cryst. E65, m408–m409.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOlmstead, M. M., Lee, M. A. & Stork, J. R. (2005). Acta Cryst. E61, m1048–m1050.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStojanovic, M., Robinson, N. J., Ngo, T. & Sykora, R. E. (2011). J. Chem. Crystallogr. 41, 1425–1432.  Web of Science CSD CrossRef CAS Google Scholar
First citationVarju, D. R., Wollschlaeger, S. A. & Leznoff, D. B. (2019). Chem. Eur. J. 25, 9017–9025.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationVostrikova, K. E. & Peresypkina, E. V. (2011). Eur. J. Inorg. Chem. pp. 811–815.  Web of Science CSD CrossRef Google Scholar
First citationWashecheck, D. M., Peterson, S. W., Reis, A. H. Jr & Williams, J. M. (1976). Inorg. Chem. 15, 74–78.  CrossRef ICSD CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhou, B.-C., Kou, H.-Z., He, Y., Wang, R.-J., Li, Y.-D. & Wang, H.-G. (2003). Chin. J. Chem. 21, 352–355.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds