organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

4-(Benzo­furan-2-yl)-2-[3-(4-chloro­phen­yl)-5-(4-fluoro­phen­yl)-4,5-di­hydro-1H-pyrazol-1-yl]thia­zole

CROSSMARK_Color_square_no_text.svg

aDepartment of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bDepartment of Chemistry, College of Science and Humanities, Shaqra University, Duwadimi, Saudi Arabia, cApplied Organic Chemistry Department, National Research Centre, Dokki, Giza, Egypt, dPharmaceutical Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia, and eSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales
*Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 13 March 2019; accepted 14 March 2019; online 20 March 2019)

The mol­ecule of the title compound, C26H17ClFN3OS, comprises benzo­furanyl (A), thia­zolyl (B), pyrazolyl (C), chloro­phenyl (D) and fluoro­phenyl (E) ring systems. Rings A–D are almost coplanar, as indicated by the twist angles between the ring pairs A/B, B/C and C/D of 7.6 (1), 4.7 (1) and 6.9 (2)°, respectively. Ring E is twisted by 73.2 (1)° from the plane through ring C. In the crystal, pairwise C—H⋯F inter­actions link the mol­ecules into inversion dimers. Aromatic ππ inter­actions are also observed between rings A and E and between rings B and C for neighbouring pairs of mol­ecules related by inversion symmetry. Taken together, the weak inter­actions generate [010] chains.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Compounds containing a benzo­furan moiety are present in many important natural products and drugs (Naik et al., 2015[Naik, R., Harmalkar, D. S., Xu, X., Jang, K. & Lee, K. (2015). Eur. J. Med. Chem. 90, 379-393.]). In addition, thia­zoles and pyrazoles are an essential core scaffold in many natural products and have various biological activities (Chhabria et al., 2016[Chhabria, M. T., Patel, S., Modi, P. & Brahmkshatriya, P. S. (2016). Curr. Top. Med. Chem. 16, 2841-2862.]; Faria et al., 2017[Faria, J. V., Vegi, P. F., Miguita, A. G. C., Dos Santos, M. S., Boechat, N. & Bernardino, A. M. R. (2017). Bioorg. Med. Chem. 25, 5891-5903.]). Therefore, the synthesis, characterization and applications of compounds containing such heterocycles are of continued inter­est and we describe here the synthesis and structure of the title compound.

The mol­ecule of the title compound comprises benzo­furanyl (A), thia­zolyl (B), pyrazolyl (C), chloro­phenyl (D) and fluoro­phenyl (E) ring systems (Fig. 1[link]). Rings A–D are almost coplanar, as indicated by the twist angles between the ring pairs A/B, B/C and C/D of 7.6 (1), 4.7 (1) and 6.9 (2)°, respectively. Ring E is twisted by 73.2 (1)° from the plane through ring C. In the arbitrarily-chosen asymmetric unit, the stereogenic centre C12 has an S configuration, but crystal symmetry generates a racemic mixture.

[Figure 1]
Figure 1
The mol­ecular structure of the title compound showing 50% probability displacement ellipsoids.

In the crystal, pairwise C—H⋯F inter­actions link mol­ecules into inversion dimers (Table 1[link]). Aromatic ππ inter­actions are also observed between rings A and E [centroid–centroid separation = 3.755 (2) Å] and between rings B and C [3.796 (2) Å] for neighbouring pairs of mol­ecules related by inversion symmetry; this results in each pair of mol­ecules being linked by four ππ inter­actions (Fig. 2[link]). The combination of C—H⋯F and ππ inter­actions generates [010] chains.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯F1i 0.93 2.58 3.254 (5) 130
Symmetry code: (i) -x-1, -y+1, -z.
[Figure 2]
Figure 2
A view of the crystal structure down the a axis, showing ππ contacts as green dotted lines and C—H⋯F contacts in red.

Synthesis and crystallization

The title compound was synthesized from the condensation of molar equivalents of 3-(4-chloro­phen­yl)-5-(4-fluoro­phen­yl)-4,5-di­hydro-1H-pyrazole-1-carbo­thio­amide with 1-(benzo­furan-2-yl)-2-bromo­ethanone in anhydrous ethanol under reflux for 2 h. The crude product was recrystallized from di­methyl­formamide solution to give colourless needles (yield 74%, m.p. 234–236 °C).

Refinement

All H atoms were placed in calculated positions and refined using a riding model. Bond lengths were set at 0.98, 0.97 and 0.93 Å for methine, methyl­ene and aromatic C—H H atoms, respectively, with their Uiso(H) values set at 1.2 times the Ueq of the atom to which they are bonded. Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C26H17ClFN3OS
Mr 473.93
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 6.6631 (6), 15.2297 (17), 22.431 (3)
β (°) 96.390 (9)
V3) 2262.1 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.29
Crystal size (mm) 0.46 × 0.19 × 0.11
 
Data collection
Diffractometer Rigaku OD SuperNova Dual source diffractometer with an Atlas detector
Absorption correction Gaussian (CrysAlis PRO; Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.])
Tmin, Tmax 0.990, 0.997
No. of measured, independent and observed [I > 2σ(I)] reflections 10799, 4617, 2323
Rint 0.042
(sin θ/λ)max−1) 0.625
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.171, 1.03
No. of reflections 4617
No. of parameters 298
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.17, −0.21
Computer programs: CrysAlis PRO (Rigaku OD, 2015[Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.]), SHELXS (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2018 (Sheldrick, 2015[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Rigaku OD, 2015); cell refinement: CrysAlis PRO (Rigaku OD, 2015); data reduction: CrysAlis PRO (Rigaku OD, 2015); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows and WinGX (Farrugia, 2012); software used to prepare material for publication: ORTEP-3 for Windows and WinGX (Farrugia, 2012), and CHEMDRAW Ultra (Cambridge Soft, 2001).

4-(Benzofuran-2-yl)-2-[3-(4-chlorophenyl)-5-(4-fluorophenyl)-4,5-dihydro-1H-pyrazol-1-yl]thiazole top
Crystal data top
C26H17ClFN3OSF(000) = 976
Mr = 473.93Dx = 1.392 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.6631 (6) ÅCell parameters from 1999 reflections
b = 15.2297 (17) Åθ = 3.7–23.3°
c = 22.431 (3) ŵ = 0.29 mm1
β = 96.390 (9)°T = 296 K
V = 2262.1 (4) Å3Needle, colourless
Z = 40.46 × 0.19 × 0.11 mm
Data collection top
Rigaku OD SuperNova Dual source
diffractometer with an Atlas detector
2323 reflections with I > 2σ(I)
ω scansRint = 0.042
Absorption correction: gaussian
(CrysAlis PRO; Rigaku OD, 2015)
θmax = 26.4°, θmin = 3.4°
Tmin = 0.990, Tmax = 0.997h = 68
10799 measured reflectionsk = 1917
4617 independent reflectionsl = 2822
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.0542P)2 + 0.6825P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
4617 reflectionsΔρmax = 0.17 e Å3
298 parametersΔρmin = 0.21 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0420 (5)0.9153 (2)0.16557 (14)0.0617 (8)
C20.2264 (5)0.8840 (2)0.17209 (15)0.0666 (9)
H20.3152760.8589310.1419300.080*
C30.2636 (5)0.8956 (2)0.23330 (15)0.0659 (9)
C40.0873 (5)0.9353 (2)0.26072 (16)0.0669 (9)
C50.4193 (6)0.8785 (3)0.26796 (18)0.0805 (11)
H50.5382900.8521520.2512080.097*
C60.3937 (7)0.9014 (3)0.32729 (19)0.0923 (12)
H60.4978150.8910530.3507940.111*
C70.2172 (8)0.9393 (3)0.35304 (18)0.0948 (13)
H70.2043630.9529270.3936930.114*
C80.0587 (7)0.9576 (3)0.32022 (18)0.0898 (12)
H80.0602490.9835060.3374680.108*
C90.0725 (5)0.9187 (2)0.11473 (14)0.0591 (8)
C100.2685 (5)0.9408 (2)0.11469 (16)0.0712 (10)
H100.3517860.9596330.1483000.085*
C110.1001 (5)0.8959 (2)0.01989 (16)0.0637 (8)
C120.1510 (5)0.8293 (2)0.05800 (15)0.0661 (9)
H120.2619810.8697440.0526680.079*
C130.1304 (5)0.8178 (3)0.12471 (15)0.0810 (11)
H13A0.1544730.7572870.1370320.097*
H13B0.2245520.8553870.1489310.097*
C140.0830 (5)0.8439 (2)0.13025 (15)0.0601 (8)
C150.1805 (5)0.7438 (2)0.02572 (14)0.0602 (8)
C160.0221 (6)0.6941 (3)0.00002 (18)0.0819 (11)
H160.1090710.7139570.0017870.098*
C170.0516 (6)0.6161 (3)0.02832 (19)0.0900 (12)
H170.0572720.5834780.0459130.108*
C180.2429 (8)0.5880 (3)0.02992 (16)0.0842 (12)
C190.4061 (6)0.6335 (3)0.00476 (17)0.0840 (12)
H190.5361280.6118950.0058500.101*
C200.3735 (5)0.7132 (3)0.02265 (15)0.0706 (10)
H200.4833020.7463310.0390960.085*
C210.1776 (5)0.8416 (2)0.18589 (14)0.0599 (8)
C220.0785 (6)0.8020 (2)0.23703 (17)0.0777 (10)
H220.0474820.7764510.2352960.093*
C230.1650 (7)0.8002 (3)0.29021 (18)0.0883 (12)
H230.0971130.7740690.3241300.106*
C240.3519 (6)0.8371 (3)0.29268 (17)0.0790 (11)
C250.4505 (5)0.8776 (3)0.24365 (18)0.0794 (11)
H250.5755720.9037420.2459980.095*
C260.3637 (5)0.8797 (2)0.19036 (16)0.0706 (9)
H260.4317590.9071470.1570050.085*
N10.0258 (4)0.89273 (19)0.06012 (12)0.0645 (7)
N30.0437 (4)0.8709 (2)0.03768 (13)0.0748 (8)
N40.1770 (4)0.87408 (18)0.08051 (12)0.0629 (7)
O10.0500 (3)0.94806 (16)0.21956 (10)0.0709 (6)
Cl10.4626 (2)0.83256 (9)0.35884 (5)0.1214 (5)
F10.2761 (5)0.51028 (17)0.05775 (12)0.1259 (10)
S10.34414 (13)0.92974 (7)0.04410 (4)0.0766 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.063 (2)0.063 (2)0.056 (2)0.0041 (17)0.0049 (16)0.0023 (16)
C20.066 (2)0.071 (2)0.060 (2)0.0049 (18)0.0033 (17)0.0044 (17)
C30.071 (2)0.062 (2)0.062 (2)0.0090 (18)0.0027 (18)0.0024 (17)
C40.075 (2)0.065 (2)0.059 (2)0.0109 (18)0.0007 (18)0.0038 (17)
C50.085 (3)0.084 (3)0.072 (3)0.000 (2)0.008 (2)0.009 (2)
C60.115 (3)0.093 (3)0.071 (3)0.009 (3)0.019 (3)0.016 (2)
C70.132 (4)0.093 (3)0.058 (2)0.006 (3)0.009 (3)0.002 (2)
C80.110 (3)0.093 (3)0.063 (3)0.003 (3)0.006 (2)0.007 (2)
C90.0597 (18)0.059 (2)0.057 (2)0.0007 (16)0.0008 (16)0.0016 (16)
C100.068 (2)0.077 (2)0.067 (2)0.0116 (19)0.0042 (17)0.0081 (18)
C110.070 (2)0.058 (2)0.063 (2)0.0065 (17)0.0039 (18)0.0037 (17)
C120.0570 (18)0.077 (2)0.063 (2)0.0064 (18)0.0009 (16)0.0006 (18)
C130.072 (2)0.109 (3)0.061 (2)0.021 (2)0.0003 (18)0.009 (2)
C140.0591 (18)0.056 (2)0.063 (2)0.0051 (16)0.0002 (16)0.0059 (16)
C150.0571 (18)0.072 (2)0.0513 (19)0.0030 (18)0.0052 (15)0.0078 (16)
C160.067 (2)0.081 (3)0.096 (3)0.007 (2)0.001 (2)0.005 (2)
C170.090 (3)0.078 (3)0.098 (3)0.000 (2)0.010 (2)0.002 (2)
C180.122 (4)0.073 (3)0.057 (2)0.016 (3)0.004 (2)0.0010 (19)
C190.082 (3)0.098 (3)0.075 (3)0.027 (2)0.023 (2)0.009 (2)
C200.061 (2)0.086 (3)0.065 (2)0.005 (2)0.0091 (17)0.0046 (19)
C210.068 (2)0.0521 (19)0.058 (2)0.0010 (16)0.0029 (16)0.0048 (16)
C220.088 (3)0.073 (2)0.071 (3)0.016 (2)0.004 (2)0.000 (2)
C230.116 (3)0.083 (3)0.064 (3)0.006 (3)0.002 (2)0.006 (2)
C240.099 (3)0.075 (3)0.064 (2)0.013 (2)0.016 (2)0.008 (2)
C250.071 (2)0.096 (3)0.072 (3)0.003 (2)0.012 (2)0.013 (2)
C260.068 (2)0.077 (2)0.067 (2)0.0017 (19)0.0035 (18)0.0026 (18)
N10.0649 (16)0.0714 (19)0.0562 (17)0.0042 (14)0.0018 (14)0.0032 (14)
N30.0708 (18)0.095 (2)0.0586 (18)0.0241 (16)0.0089 (15)0.0044 (16)
N40.0627 (16)0.0638 (18)0.0622 (18)0.0054 (14)0.0064 (14)0.0006 (14)
O10.0718 (14)0.0755 (16)0.0627 (15)0.0045 (12)0.0045 (12)0.0076 (12)
Cl10.1498 (11)0.1418 (12)0.0796 (8)0.0282 (9)0.0433 (7)0.0075 (7)
F10.176 (3)0.0949 (19)0.105 (2)0.0308 (18)0.0060 (17)0.0190 (15)
S10.0685 (6)0.0863 (7)0.0745 (6)0.0181 (5)0.0061 (5)0.0031 (5)
Geometric parameters (Å, º) top
C1—C21.341 (4)C13—H13A0.9700
C1—O11.388 (4)C13—H13B0.9700
C1—C91.442 (4)C14—N41.301 (4)
C2—C31.433 (4)C14—C211.460 (4)
C2—H20.9300C15—C161.372 (5)
C3—C51.389 (5)C15—C201.377 (4)
C3—C41.401 (5)C16—C171.372 (5)
C4—C81.370 (5)C16—H160.9300
C4—O11.384 (4)C17—C181.349 (5)
C5—C61.368 (5)C17—H170.9300
C5—H50.9300C18—C191.358 (5)
C6—C71.378 (6)C18—F11.367 (4)
C6—H60.9300C19—C201.389 (5)
C7—C81.381 (6)C19—H190.9300
C7—H70.9300C20—H200.9300
C8—H80.9300C21—C261.383 (4)
C9—C101.350 (4)C21—C221.396 (5)
C9—N11.381 (4)C22—C231.382 (5)
C10—S11.722 (4)C22—H220.9300
C10—H100.9300C23—C241.373 (5)
C11—N11.300 (4)C23—H230.9300
C11—N31.359 (4)C24—C251.365 (5)
C11—S11.734 (3)C24—Cl11.731 (4)
C12—N31.470 (4)C25—C261.385 (5)
C12—C151.513 (5)C25—H250.9300
C12—C131.528 (5)C26—H260.9300
C12—H120.9800N3—N41.380 (3)
C13—C141.495 (4)
C2—C1—O1110.7 (3)N4—C14—C13113.2 (3)
C2—C1—C9132.1 (3)C21—C14—C13124.7 (3)
O1—C1—C9117.1 (3)C16—C15—C20118.1 (3)
C1—C2—C3108.6 (3)C16—C15—C12122.7 (3)
C1—C2—H2125.7C20—C15—C12119.1 (3)
C3—C2—H2125.7C17—C16—C15121.9 (4)
C5—C3—C4118.5 (3)C17—C16—H16119.0
C5—C3—C2137.1 (4)C15—C16—H16119.0
C4—C3—C2104.4 (3)C18—C17—C16118.1 (4)
C8—C4—O1125.8 (4)C18—C17—H17120.9
C8—C4—C3123.6 (4)C16—C17—H17120.9
O1—C4—C3110.6 (3)C17—C18—C19122.8 (4)
C6—C5—C3118.5 (4)C17—C18—F1119.2 (4)
C6—C5—H5120.7C19—C18—F1118.0 (4)
C3—C5—H5120.7C18—C19—C20118.3 (4)
C5—C6—C7121.5 (4)C18—C19—H19120.9
C5—C6—H6119.3C20—C19—H19120.9
C7—C6—H6119.3C15—C20—C19120.7 (4)
C6—C7—C8121.9 (4)C15—C20—H20119.7
C6—C7—H7119.0C19—C20—H20119.7
C8—C7—H7119.0C26—C21—C22117.9 (3)
C4—C8—C7115.9 (4)C26—C21—C14121.9 (3)
C4—C8—H8122.0C22—C21—C14120.2 (3)
C7—C8—H8122.0C23—C22—C21120.9 (3)
C10—C9—N1115.8 (3)C23—C22—H22119.5
C10—C9—C1127.4 (3)C21—C22—H22119.5
N1—C9—C1116.8 (3)C24—C23—C22119.6 (4)
C9—C10—S1111.0 (3)C24—C23—H23120.2
C9—C10—H10124.5C22—C23—H23120.2
S1—C10—H10124.5C25—C24—C23120.7 (3)
N1—C11—N3121.2 (3)C25—C24—Cl1119.7 (3)
N1—C11—S1116.7 (3)C23—C24—Cl1119.6 (3)
N3—C11—S1122.1 (3)C24—C25—C26119.7 (4)
N3—C12—C15112.3 (3)C24—C25—H25120.1
N3—C12—C13100.4 (3)C26—C25—H25120.1
C15—C12—C13113.6 (3)C21—C26—C25121.2 (3)
N3—C12—H12110.1C21—C26—H26119.4
C15—C12—H12110.1C25—C26—H26119.4
C13—C12—H12110.1C11—N1—C9109.0 (3)
C14—C13—C12103.9 (3)C11—N3—N4121.3 (3)
C14—C13—H13A111.0C11—N3—C12123.9 (3)
C12—C13—H13A111.0N4—N3—C12114.4 (3)
C14—C13—H13B111.0C14—N4—N3107.4 (3)
C12—C13—H13B111.0C4—O1—C1105.7 (3)
H13A—C13—H13B109.0C10—S1—C1187.54 (17)
N4—C14—C21122.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···F1i0.932.583.254 (5)130
Symmetry code: (i) x1, y+1, z.
 

Acknowledgements

The authors thank Umm Al-Qura and Cardiff Universities for their ongoing support.

Funding information

Funding for this research was provided by: Deanship of Scientific Research at Umm Al-Qura University (grant No. 17-MED-1-03-0007 to AA).

References

First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationChhabria, M. T., Patel, S., Modi, P. & Brahmkshatriya, P. S. (2016). Curr. Top. Med. Chem. 16, 2841–2862.  CAS Google Scholar
First citationFaria, J. V., Vegi, P. F., Miguita, A. G. C., Dos Santos, M. S., Boechat, N. & Bernardino, A. M. R. (2017). Bioorg. Med. Chem. 25, 5891–5903.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNaik, R., Harmalkar, D. S., Xu, X., Jang, K. & Lee, K. (2015). Eur. J. Med. Chem. 90, 379–393.  CrossRef CAS PubMed Google Scholar
First citationRigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds