organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

N′-[1-(Pyrazin-2-yl)ethyl­­idene]pyrazine-2-carbo­hydrazide

CROSSMARK_Color_square_no_text.svg

aChongqing Key Laboratory of Environmental, Materials & Remediation Technologies, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, 402160, People's Republic of China
*Correspondence e-mail: ouwzdong@qq.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 10 August 2018; accepted 12 August 2018; online 21 August 2018)

The title compoud, C11H10N6O, was synthesized by the condensation reaction of pyrazine-2-carbohydrazide with 2-acetyl­pyrazine in ethanol. The dihedral angle between the pyrazine rings is 4.7 (3)°. In the crystal, aromatic ππ stacking [centroid–centroid separations = 3.606 (5) and 3.671 (5) Å] connect the mol­ecules into stacks propagating in the [010] direction. A weak C—H⋯N inter­action is also observed. The crystal studied was refined as a two-component twin.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

The Schiff base acyl­hydrazone ligand has been well studied and used in supra­molecular chemistry (Stadler & Harrowfield, 2009[Stadler, A. M. & Harrowfield, J. (2009). Inorg. Chim. Acta, 362, 4298-4314.]). Its applications have focused on mol­ecular switches (Coskun et al., 2012[Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. (2012). Chem. Soc. Rev. 41, 19-30.]), sensors (Albelda et al., 2012[Albelda, M. T., Frias, J. C., Garcia-Espana, E. & Schneider, H. J. (2012). Chem. Soc. Rev. 41, 3859-3877.]) and single mol­ecular magnets (SMMs) (Anwar et al., 2018[Anwar, M. U., Al-Harrasi, A., Gavey, E. L., Pilkington, M., Rawson, J. M. & Thompson, L. K. (2018). Dalton Trans. 47, 2511-2521.]). 2-Acetyl­pyrazine-based hydrazone ligands and their transition metal chemistry have also been reported (Hou et al., 2018[Hou, X.-F., Zhao, X.-L., Zhang, L., Wu, W.-N. & Wang, Y. (2018). Chin. J. Inorg. Chem. 34, 201-205.]; Li et al., 2015[Li, C.-R., Liao, Z.-C., Qin, J.-C., Wang, B.-D. & Yang, Z.-Y. (2015). J. Lumin. 168, 330-333.]). As part of our studies in this area, we synthesized the title 2-acetyl­pyrazine-based hydrazone ligand with two pyrazine rings as a possible new ligand.

The dihedral angle between the pyrazine rings is 4.7 (3)° (Fig. 1[link]). The C2—N2 bond length is 1.291 (7) Å, which is shorter than C1—N1 [1.362 (7) Å], showing that C2—N2 has strong double-bond character. The N—H grouping is sterically hindered from forming hydrogen bonds but a short intra­molecular N—H⋯N contact occurs (Table 1[link]). In the crystal, aromatic ππ stacking [centroid–centroid separations = 3.606 (5) and 3.671 (5) Å] connect the mol­ecules into stacks propagating in the [010] direction (Fig. 2[link]). A weak C—H⋯N inter­action is also observed (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N5 0.86 2.28 2.671 (7) 108
C7—H7C⋯N4i 0.96 2.57 3.247 (8) 127
Symmetry code: (i) x, y-1, z.
[Figure 1]
Figure 1
The title compound showing displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
Crystal packing viewed along the b-axis direction.

Synthesis and crystallization

The title mol­ecule was prepared by the condensation reaction of pyrazine-2-carbohydrazide (1.38 g, 10 mmol) with 2-acetyl­pyrazine (1.22 g, 10 mmol) in 50 ml of refluxing ethanol for 16 h, resulting in a transparent light-yellow solution. After one night, colourless crystals suitable for X-ray analysis had formed.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C11H10N6O
Mr 242.25
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 7.247 (8), 8.066 (9), 9.77 (1)
α, β, γ (°) 79.706 (14), 79.526 (15), 89.518 (14)
V3) 552.4 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.2 × 0.17 × 0.12
 
Data collection
Diffractometer Bruker P4
Absorption correction Multi-scan (SADABS; Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.598, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 1918, 1918, 1155
Rint 0.037
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.087, 0.268, 1.08
No. of reflections 1918
No. of parameters 165
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.36, −0.33
Computer programs: APEX2 and SAINT (Bruker, 2014[Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

N'-[1-(Pyrazin-2-yl)ethylidene]pyrazine-2-carbohydrazide top
Crystal data top
C11H10N6OZ = 2
Mr = 242.25F(000) = 252
Triclinic, P1Dx = 1.456 Mg m3
a = 7.247 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.066 (9) ÅCell parameters from 1331 reflections
c = 9.77 (1) Åθ = 2.6–27.8°
α = 79.706 (14)°µ = 0.10 mm1
β = 79.526 (15)°T = 296 K
γ = 89.518 (14)°Block, colourless
V = 552.4 (10) Å30.2 × 0.17 × 0.12 mm
Data collection top
Bruker P4
diffractometer
Rint = 0.037
ω scanθmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
h = 88
Tmin = 0.598, Tmax = 0.746k = 99
1918 measured reflectionsl = 1111
1918 independent reflections1 standard reflections every 20 reflections
1155 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.087H-atom parameters constrained
wR(F2) = 0.268 w = 1/[σ2(Fo2) + (0.1018P)2 + 1.0907P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1918 reflectionsΔρmax = 0.36 e Å3
165 parametersΔρmin = 0.33 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

The Uiso values of all C(H) groups and all N(H) groups were set to 1.2Ueq(C). The Uiso values of all C(H,H,H)groups were set to 1.5Ueq(C) Aromatic/amide H refined with riding coordinates: N1(H1), C6(H6), C4(H4), C11(H11), C9(H9), C10(H10), C5(H5) Idealized Me refined as rotating group: C7(H7A,H7B,H7C)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.6785 (7)1.0992 (5)0.2460 (4)0.0522 (13)
N10.7251 (7)0.9311 (5)0.0408 (4)0.0346 (12)
H10.7272050.8291790.0037330.042*
N20.7598 (6)1.0627 (5)0.0231 (4)0.0315 (11)
N30.8448 (8)1.1337 (6)0.3525 (5)0.0436 (14)
N40.8932 (8)1.4608 (6)0.1988 (5)0.0454 (14)
N50.6503 (7)0.6541 (6)0.1374 (5)0.0375 (12)
N60.6035 (8)0.6692 (7)0.4173 (5)0.0510 (15)
C10.6874 (8)0.9607 (7)0.1745 (6)0.0329 (14)
C20.7991 (7)1.0232 (6)0.1484 (5)0.0278 (13)
C30.8373 (8)1.1694 (6)0.2138 (6)0.0320 (13)
C40.8768 (10)1.2648 (7)0.4115 (6)0.0479 (17)
H40.8856941.2461860.5067430.057*
C50.8969 (9)1.4251 (8)0.3369 (7)0.0469 (17)
H50.9138651.5128150.3838460.056*
C60.8640 (9)1.3318 (6)0.1381 (6)0.0381 (15)
H60.8614391.3510380.0417030.046*
C70.8116 (10)0.8504 (7)0.2285 (6)0.0473 (17)
H7A0.6882010.7994640.2577490.071*
H7B0.8657460.8555390.3103570.071*
H7C0.8889780.7842560.1692220.071*
C80.6552 (8)0.8001 (6)0.2275 (6)0.0325 (13)
C90.6244 (9)0.5172 (7)0.1905 (6)0.0439 (16)
H90.6233600.4122560.1325760.053*
C100.5992 (9)0.5243 (8)0.3272 (6)0.0455 (16)
H100.5783530.4244320.3577670.055*
C110.6329 (9)0.8077 (8)0.3658 (6)0.0435 (16)
H110.6384940.9122450.4249530.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.082 (4)0.032 (2)0.043 (3)0.001 (2)0.016 (2)0.0002 (19)
N10.045 (3)0.026 (2)0.032 (3)0.006 (2)0.006 (2)0.006 (2)
N20.036 (3)0.026 (2)0.032 (3)0.002 (2)0.003 (2)0.008 (2)
N30.057 (4)0.040 (3)0.034 (3)0.006 (2)0.008 (3)0.007 (2)
N40.065 (4)0.026 (2)0.046 (3)0.005 (2)0.008 (3)0.009 (2)
N50.046 (3)0.033 (3)0.032 (3)0.004 (2)0.006 (2)0.005 (2)
N60.064 (4)0.054 (3)0.037 (3)0.011 (3)0.010 (3)0.015 (3)
C10.038 (4)0.028 (3)0.032 (3)0.001 (2)0.005 (3)0.005 (2)
C20.030 (3)0.020 (2)0.031 (3)0.000 (2)0.003 (3)0.001 (2)
C30.035 (3)0.030 (3)0.030 (3)0.001 (2)0.004 (3)0.005 (2)
C40.066 (5)0.045 (4)0.034 (3)0.009 (3)0.011 (3)0.009 (3)
C50.060 (4)0.044 (4)0.042 (4)0.006 (3)0.011 (3)0.020 (3)
C60.058 (4)0.021 (3)0.035 (3)0.002 (3)0.010 (3)0.002 (2)
C70.072 (5)0.027 (3)0.039 (3)0.007 (3)0.009 (3)0.003 (3)
C80.030 (3)0.030 (3)0.036 (3)0.003 (2)0.002 (3)0.006 (2)
C90.056 (4)0.033 (3)0.041 (3)0.014 (3)0.004 (3)0.005 (3)
C100.054 (4)0.040 (3)0.045 (4)0.009 (3)0.009 (3)0.014 (3)
C110.055 (4)0.043 (3)0.031 (3)0.005 (3)0.006 (3)0.004 (3)
Geometric parameters (Å, º) top
O1—C11.215 (6)C2—C71.482 (7)
N1—H10.8600C3—C61.381 (7)
N1—N21.371 (6)C4—H40.9300
N1—C11.362 (7)C4—C51.361 (8)
N2—C21.291 (7)C5—H50.9300
N3—C31.345 (7)C6—H60.9300
N3—C41.332 (7)C7—H7A0.9600
N4—C51.333 (8)C7—H7B0.9600
N4—C61.323 (7)C7—H7C0.9600
N5—C81.335 (7)C8—C111.380 (8)
N5—C91.329 (7)C9—H90.9300
N6—C101.329 (8)C9—C101.372 (8)
N6—C111.339 (7)C10—H100.9300
C1—C81.514 (7)C11—H110.9300
C2—C31.487 (7)
N2—N1—H1119.8C4—C5—H5118.8
C1—N1—H1119.8N4—C6—C3121.8 (5)
C1—N1—N2120.4 (4)N4—C6—H6119.1
C2—N2—N1116.3 (4)C3—C6—H6119.1
C4—N3—C3115.7 (5)C2—C7—H7A109.5
C6—N4—C5116.3 (5)C2—C7—H7B109.5
C9—N5—C8115.4 (5)C2—C7—H7C109.5
C10—N6—C11115.6 (5)H7A—C7—H7B109.5
O1—C1—N1125.2 (5)H7A—C7—H7C109.5
O1—C1—C8122.1 (5)H7B—C7—H7C109.5
N1—C1—C8112.7 (5)N5—C8—C1118.1 (5)
N2—C2—C3114.7 (4)N5—C8—C11122.1 (5)
N2—C2—C7126.4 (5)C11—C8—C1119.8 (5)
C7—C2—C3118.9 (5)N5—C9—H9118.6
N3—C3—C2115.7 (5)N5—C9—C10122.8 (6)
N3—C3—C6121.6 (5)C10—C9—H9118.6
C6—C3—C2122.7 (5)N6—C10—C9122.1 (5)
N3—C4—H4118.9N6—C10—H10118.9
N3—C4—C5122.2 (6)C9—C10—H10118.9
C5—C4—H4118.9N6—C11—C8122.0 (5)
N4—C5—C4122.3 (5)N6—C11—H11119.0
N4—C5—H5118.8C8—C11—H11119.0
O1—C1—C8—N5173.8 (5)C1—C8—C11—N6179.8 (6)
O1—C1—C8—C116.5 (9)C2—C3—C6—N4178.3 (6)
N1—N2—C2—C3179.5 (5)C3—N3—C4—C51.3 (9)
N1—N2—C2—C70.5 (8)C4—N3—C3—C2179.3 (6)
N1—C1—C8—N55.8 (7)C4—N3—C3—C60.9 (9)
N1—C1—C8—C11173.9 (5)C5—N4—C6—C30.5 (9)
N2—N1—C1—O11.1 (9)C6—N4—C5—C41.7 (10)
N2—N1—C1—C8179.4 (5)C7—C2—C3—N312.5 (8)
N2—C2—C3—N3168.4 (5)C7—C2—C3—C6167.4 (6)
N2—C2—C3—C611.8 (8)C8—N5—C9—C101.7 (9)
N3—C3—C6—N41.8 (10)C9—N5—C8—C1179.0 (5)
N3—C4—C5—N42.7 (11)C9—N5—C8—C110.6 (8)
N5—C8—C11—N60.6 (10)C10—N6—C11—C80.7 (9)
N5—C9—C10—N61.7 (10)C11—N6—C10—C90.4 (10)
C1—N1—N2—C2178.2 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N50.862.282.671 (7)108
C7—H7C···N4i0.962.573.247 (8)127
Symmetry code: (i) x, y1, z.
 

Funding information

The author would like to thank the major cultivation project of Chongqing University of Arts and Sciences (No. P2017CH10) for financial support.

References

First citationAlbelda, M. T., Frias, J. C., Garcia-Espana, E. & Schneider, H. J. (2012). Chem. Soc. Rev. 41, 3859–3877.  Google Scholar
First citationAnwar, M. U., Al-Harrasi, A., Gavey, E. L., Pilkington, M., Rawson, J. M. & Thompson, L. K. (2018). Dalton Trans. 47, 2511–2521.  CrossRef Google Scholar
First citationBruker (2014). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCoskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. (2012). Chem. Soc. Rev. 41, 19–30.  CrossRef Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHou, X.-F., Zhao, X.-L., Zhang, L., Wu, W.-N. & Wang, Y. (2018). Chin. J. Inorg. Chem. 34, 201–205.  Google Scholar
First citationLi, C.-R., Liao, Z.-C., Qin, J.-C., Wang, B.-D. & Yang, Z.-Y. (2015). J. Lumin. 168, 330–333.  CrossRef Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationStadler, A. M. & Harrowfield, J. (2009). Inorg. Chim. Acta, 362, 4298–4314.  CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds