organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

1,1-Di­methyl-3-[4-(tri­fluoro­meth­yl)phen­yl]urea

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and cChemistry Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, PO Box 83, Al-Kharij 11942, Saudi Arabia
*Correspondence e-mail: gelhiti@ksu.edu.sa

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 5 January 2018; accepted 7 January 2018; online 12 January 2018)

In the title compound, C10H11F3N2O, the dihedral angle between the di­methyl­urea and phenyl group planes is 37.49 (7)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, generating chains propagating in the [010] direction. The tri­fluoro­methyl group is disordered over two orientations in a 0.577 (12):0.423 (12) ratio.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Various synthetic methods are known for the production of ureas (e.g.: Artuso et al., 2007[Artuso, E., Degani, I., Fochi, R. & Magistris, C. (2007). Synthesis, pp. 3497-3506.]; Carnaroglio et al., 2013[Carnaroglio, D., Martina, K., Palmisano, G., Penoni, A., Domini, C. & Cravotto, G. (2013). Beilstein J. Org. Chem. 9, 2378-2386.]). As part of our studies in this area, we now describe the synthesis and structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing 50% displacement ellipsoids.

The angle between the planes through the non-hydrogen atoms of the di­methyl­urea and phenyl groups is 37.49 (7)°. In the crystal (Fig. 2[link]), the mol­ecules are linked by N—H⋯O hydrogen bonds (Table 1[link]) to generate C(4) amide chains propagating in the [010] direction with adjacent mol­ecules in the chain related by b-glide symmetry.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.08 2.8939 (13) 157
Symmetry code: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].
[Figure 2]
Figure 2
A view of the crystal packing down [100]. H atoms have been omitted for clarity.

Synthesis and crystallization

4-Tri­fluoro­methyl­aniline (10 mmol) and di­methyl­carbamoyl chloride (11 mmol) in anhydrous di­chloro­methane containing tri­ethyl­amine (15 mmol) were heated under reflux for 1 h. The mixture was allowed to cool down and poured into water. The layers were separated and the organic layer was dried (anhydrous magnesium sulfate) and evaporated under reduced pressure. The solid obtained was recrystallized from ethyl acetate solution to give colourless blocks of (I)[link], m.p. 195–196°C (lit. 193–194°C; Hutchby, 2013[Hutchby, M. (2013). Novel Synthetic Chemistry of Ureas and Amides. Springer Thesis. Berlin Heidelberg: Springer-Verlag.]).

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The tri­fluoro­methyl group is disordered over two orientations in a 0.577 (12):0.423 (12) ratio.

Table 2
Experimental details

Crystal data
Chemical formula C10H11F3N2O
Mr 232.21
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 293
a, b, c (Å) 9.8152 (3), 10.0783 (2), 22.5120 (7)
V3) 2226.90 (11)
Z 8
Radiation type Cu Kα
μ (mm−1) 1.10
Crystal size (mm) 0.30 × 0.23 × 0.10
 
Data collection
Diffractometer Agilent SuperNova, Dual, Cu at zero, Atlas
Absorption correction Gaussian (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.940, 0.974
No. of measured, independent and observed [I > 2σ(I)] reflections 7168, 2217, 1708
Rint 0.030
(sin θ/λ)max−1) 0.623
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.139, 1.06
No. of reflections 2217
No. of parameters 176
No. of restraints 60
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.16, −0.17
Computer programs: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2013 (Sheldrick, 2015>[Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra, Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Structural data


Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

1,1-Dimethyl-3-[4-(trifluoromethyl)phenyl]urea top
Crystal data top
C10H11F3N2ODx = 1.385 Mg m3
Mr = 232.21Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, PbcaCell parameters from 2946 reflections
a = 9.8152 (3) Åθ = 3.9–73.8°
b = 10.0783 (2) ŵ = 1.10 mm1
c = 22.5120 (7) ÅT = 293 K
V = 2226.90 (11) Å3Block, colourless
Z = 80.30 × 0.23 × 0.10 mm
F(000) = 960
Data collection top
Agilent SuperNova, Dual, Cu at zero, Atlas
diffractometer
1708 reflections with I > 2σ(I)
ω scansRint = 0.030
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
θmax = 74.0°, θmin = 3.9°
Tmin = 0.940, Tmax = 0.974h = 117
7168 measured reflectionsk = 1210
2217 independent reflectionsl = 2825
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.0878P)2 + 0.0492P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.139(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.16 e Å3
2217 reflectionsΔρmin = 0.17 e Å3
176 parametersExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
60 restraintsExtinction coefficient: 0.0102 (9)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. All hydrogen atoms were placed in calculated positions and refined using a riding model. Methyl C—H bonds were fixed at 0.96 Å, with displacement parameters 1.5 times Ueq(C), and were allowed to spin about the C—N bond. The N—H bond was fixed at 0.86 Å and aromatic C—H distances were set to 0.93 Å and their U(iso) set to 1.2 times the Ueq for the atoms to which they are bonded.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.5872 (3)0.0387 (3)0.72719 (10)0.1049 (8)
C20.49935 (19)0.02575 (19)0.67302 (8)0.0730 (5)
C30.5321 (2)0.06604 (19)0.62979 (9)0.0800 (5)
H30.60700.12140.63490.096*
C40.45445 (17)0.07598 (15)0.57921 (8)0.0678 (4)
H40.47740.13780.55020.081*
C50.34195 (14)0.00549 (12)0.57108 (6)0.0517 (3)
C60.30912 (16)0.09806 (14)0.61453 (7)0.0613 (4)
H60.23410.15330.60960.074*
C70.38819 (18)0.10778 (17)0.66514 (7)0.0707 (5)
H70.36640.17010.69410.085*
C80.20108 (14)0.08594 (11)0.48853 (6)0.0517 (3)
C90.0580 (2)0.15002 (18)0.40623 (10)0.0831 (5)
H9A0.05210.23040.42900.125*
H9B0.03200.11990.39640.125*
H9C0.10820.16650.37040.125*
C100.1105 (2)0.08604 (16)0.42132 (9)0.0778 (5)
H10A0.19220.11510.40190.117*
H10B0.03540.09120.39410.117*
H10C0.09280.14180.45500.117*
N10.26294 (13)0.01353 (10)0.51968 (5)0.0546 (3)
H10.25290.09340.50700.065*
N20.12717 (14)0.04922 (11)0.44086 (6)0.0622 (4)
O10.21290 (14)0.20262 (9)0.50340 (5)0.0728 (4)
F10.7132 (6)0.024 (2)0.7171 (3)0.169 (5)0.423 (12)
F20.5686 (15)0.1449 (10)0.7571 (5)0.170 (5)0.423 (12)
F30.5525 (14)0.0492 (11)0.7660 (4)0.164 (4)0.423 (12)
F1A0.6752 (9)0.1385 (8)0.7205 (3)0.148 (3)0.577 (12)
F3A0.6621 (13)0.0643 (6)0.7389 (4)0.179 (4)0.577 (12)
F2A0.5211 (7)0.0711 (18)0.7739 (2)0.206 (6)0.577 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.108 (2)0.137 (2)0.0695 (13)0.0207 (16)0.0197 (12)0.0095 (13)
C20.0724 (11)0.0874 (10)0.0592 (9)0.0186 (8)0.0063 (7)0.0109 (7)
C30.0773 (11)0.0784 (10)0.0841 (12)0.0059 (8)0.0200 (9)0.0042 (8)
C40.0750 (10)0.0551 (7)0.0734 (10)0.0061 (6)0.0107 (8)0.0048 (6)
C50.0568 (8)0.0428 (5)0.0554 (7)0.0081 (5)0.0007 (6)0.0026 (5)
C60.0601 (9)0.0642 (8)0.0597 (8)0.0048 (6)0.0068 (6)0.0068 (6)
C70.0772 (11)0.0825 (10)0.0523 (8)0.0172 (8)0.0104 (7)0.0088 (7)
C80.0574 (8)0.0389 (5)0.0587 (7)0.0017 (5)0.0043 (6)0.0007 (5)
C90.0924 (13)0.0718 (10)0.0850 (12)0.0069 (8)0.0206 (10)0.0156 (8)
C100.0931 (13)0.0589 (8)0.0814 (11)0.0074 (7)0.0245 (9)0.0080 (7)
N10.0669 (7)0.0348 (5)0.0620 (7)0.0007 (4)0.0077 (5)0.0041 (4)
N20.0704 (8)0.0499 (6)0.0664 (7)0.0012 (5)0.0119 (6)0.0021 (5)
O10.1053 (10)0.0351 (5)0.0781 (7)0.0012 (4)0.0095 (6)0.0024 (4)
F10.086 (3)0.322 (15)0.099 (4)0.005 (5)0.029 (2)0.024 (6)
F20.213 (12)0.172 (6)0.124 (7)0.007 (5)0.083 (8)0.061 (5)
F30.203 (9)0.210 (7)0.078 (4)0.017 (6)0.043 (4)0.056 (4)
F1A0.148 (5)0.178 (5)0.116 (4)0.073 (4)0.067 (3)0.023 (3)
F3A0.217 (8)0.168 (4)0.152 (6)0.037 (5)0.117 (6)0.009 (3)
F2A0.140 (4)0.421 (18)0.0560 (18)0.029 (8)0.0078 (18)0.026 (5)
Geometric parameters (Å, º) top
C1—F11.267 (6)C6—C71.382 (2)
C1—F21.277 (7)C6—H60.9300
C1—F2A1.277 (7)C7—H70.9300
C1—F31.290 (7)C8—O11.2281 (16)
C1—F3A1.300 (6)C8—N21.3471 (19)
C1—F1A1.334 (5)C8—N11.3658 (17)
C1—C21.499 (3)C9—N21.449 (2)
C2—C71.380 (3)C9—H9A0.9600
C2—C31.381 (3)C9—H9B0.9600
C3—C41.374 (3)C9—H9C0.9600
C3—H30.9300C10—N21.4417 (19)
C4—C51.388 (2)C10—H10A0.9600
C4—H40.9300C10—H10B0.9600
C5—C61.390 (2)C10—H10C0.9600
C5—N11.4060 (18)N1—H10.8600
F1—C1—F2109.5 (6)C5—C6—H6120.1
F1—C1—F3107.3 (7)C2—C7—C6120.49 (16)
F2—C1—F3100.4 (6)C2—C7—H7119.8
F2A—C1—F3A108.9 (6)C6—C7—H7119.8
F2A—C1—F1A103.3 (6)O1—C8—N2122.07 (12)
F3A—C1—F1A105.0 (5)O1—C8—N1121.39 (13)
F1—C1—C2113.9 (3)N2—C8—N1116.54 (11)
F2—C1—C2114.9 (4)N2—C9—H9A109.5
F2A—C1—C2113.6 (4)N2—C9—H9B109.5
F3—C1—C2109.8 (4)H9A—C9—H9B109.5
F3A—C1—C2114.9 (3)N2—C9—H9C109.5
F1A—C1—C2110.3 (2)H9A—C9—H9C109.5
C7—C2—C3119.65 (16)H9B—C9—H9C109.5
C7—C2—C1120.4 (2)N2—C10—H10A109.5
C3—C2—C1119.9 (2)N2—C10—H10B109.5
C4—C3—C2120.26 (17)H10A—C10—H10B109.5
C4—C3—H3119.9N2—C10—H10C109.5
C2—C3—H3119.9H10A—C10—H10C109.5
C3—C4—C5120.50 (16)H10B—C10—H10C109.5
C3—C4—H4119.8C8—N1—C5124.59 (10)
C5—C4—H4119.8C8—N1—H1117.7
C4—C5—C6119.25 (14)C5—N1—H1117.7
C4—C5—N1117.81 (13)C8—N2—C10124.32 (12)
C6—C5—N1122.89 (13)C8—N2—C9119.22 (13)
C7—C6—C5119.85 (15)C10—N2—C9116.46 (14)
C7—C6—H6120.1
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.082.8939 (13)157
Symmetry code: (i) x+1/2, y1/2, z.
 

Footnotes

Additional corresponding author, e-mail: kariukib@cardiff.ac.uk.

Funding information

The project was supported by King Saud University, Deanship of Scientific Research, Research Chairs and Cardiff University.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationArtuso, E., Degani, I., Fochi, R. & Magistris, C. (2007). Synthesis, pp. 3497–3506.  Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra, Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationCarnaroglio, D., Martina, K., Palmisano, G., Penoni, A., Domini, C. & Cravotto, G. (2013). Beilstein J. Org. Chem. 9, 2378–2386.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHutchby, M. (2013). Novel Synthetic Chemistry of Ureas and Amides. Springer Thesis. Berlin Heidelberg: Springer-Verlag.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds

[# https x2 cm 20170801 %]