organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

3-Methyl-5-(4-methyl­piperazin-1-yl)-1-phenyl-1H-pyrazole-4-carbaldehyde

CROSSMARK_Color_square_no_text.svg

aDepartment of Physics, Shri Pillappa College of Engineering, Bengaluru 560 089, India, bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India, cInstitution of Excellence, University of Mysore, Manasagangotri, Mysore 570 006, India, dDepartment of Studies in Physics, University of Mysore, Manasagangotri, Mysore 570 006, India, and eDepartment of Physics, Acharya Institute of Technology, Soldevanahalli, Bengaluru 560 107, India
*Correspondence e-mail: manjunathhr@acharya.ac.in

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 October 2016; accepted 9 October 2016; online 15 November 2016)

In the title compound, C16H20N4O, the dihedral angle between the pyrazole and phenyl rings is 53.86 (12)°. The piperazine ring adopts a chair conformation with the exocyclic N—C bonds in equatorial orientations. In the crystal, mol­ecules are linked by very weak C—H⋯O hydrogen bonds to generate [010] C(8) chains, with adjacent mol­ecules related by translation.

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Piperazine derivatives are found in biologically active compounds across many therapeutic areas and display anti­psychotic (Chaudhary et al., 2006[Chaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819-1826.]) and anti­fungal (Upadhayaya et al., 2004[Upadhayaya, R. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225-2238.]) behaviours. As part of our ongoing studies in this area (Girisha et al., 2010[Girisha, K. S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem. 45, 4640-4644.]), herein we report the synthesis and structure of the title compound (Fig. 1[link]).

[Figure 1]
Figure 1
A view of the title compound, with displacement ellipsoids for non-H atoms drawn at the 50% probability level.

The dihedral angle between the pyrazole (r.m.s. deviation = 0.012 Å) and phenyl rings is 53.86 (12)°. The piperazine ring adopts a chair conformation with the exocyclic N—C bonds in equatorial orientations. The piperazine ring bis­ects the plane of the pyrazole ring which is evident from the dihedral angle value of 53.57 (10)° between the mean planes of the pyrazole and piperazine (all atoms) rings.

In the crystal, the mol­ecules are linked by weak C—H⋯O hydrogen bonds (Table 1[link]) to generate [010] C(8) chains, with adjacent mol­ecules related by translation (Fig. 2[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13A⋯O8i 0.97 2.60 3.4753 (19) 151
Symmetry code: (i) x, y+1, z.
[Figure 2]
Figure 2
Packing diagram of the title mol­ecule, viewed down the c axis. The dashed lines represent hydrogen bonds.

Synthesis and crystallization

After synthesis and purification (Girisha et al., 2010[Girisha, K. S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem. 45, 4640-4644.]), the title compound was dissolved in ethanol and the solution was gently heated and left undisturbed. After slow evaporation of the solvent, colourless blocks grew after 10 d.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C16H20N4O
Mr 284.36
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 293
a, b, c (Å) 17.1027 (13), 9.4885 (8), 18.6837 (16)
V3) 3032.0 (4)
Z 8
Radiation type Cu Kα
μ (mm−1) 0.65
Crystal size (mm) 0.30 × 0.27 × 0.25
 
Data collection
Diffractometer Bruker X8 Proteum CCD
Absorption correction Multi-scan (SADABS; Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.824, 0.851
No. of measured, independent and observed [I > 2σ(I)] reflections 14169, 2540, 2027
Rint 0.078
(sin θ/λ)max−1) 0.585
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.117, 1.07
No. of reflections 2540
No. of parameters 193
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.18, −0.17
Computer programs: APEX2 and SAINT (Bruker, 2013[Bruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2008).

Structural data


Computing details top

Data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: Mercury (Macrae et al., 2008).

3-Methyl-5-(4-methylpiperazin-1-yl)-1-phenyl-1H-pyrazole-4-carbaldehyde top
Crystal data top
C16H20N4OF(000) = 1216
Mr = 284.36Dx = 1.246 Mg m3
Orthorhombic, PbcaCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ac 2abCell parameters from 2501 reflections
a = 17.1027 (13) Åθ = 5.4–64.5°
b = 9.4885 (8) ŵ = 0.65 mm1
c = 18.6837 (16) ÅT = 293 K
V = 3032.0 (4) Å3Block, colorless
Z = 80.30 × 0.27 × 0.25 mm
Data collection top
Bruker X8 Proteum CCD
diffractometer
2540 independent reflections
Radiation source: fine-focus sealed tube2027 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
Detector resolution: 10.7 pixels mm-1θmax = 64.5°, θmin = 5.4°
φ and ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Bruker, 2013)
k = 1110
Tmin = 0.824, Tmax = 0.851l = 1521
14169 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0579P)2 + 0.1549P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2540 reflectionsΔρmax = 0.18 e Å3
193 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0020 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.38513 (6)0.16761 (12)0.60098 (8)0.0434 (3)
N20.40285 (7)0.03759 (14)0.63048 (8)0.0514 (4)
C30.40416 (7)0.05029 (17)0.57596 (10)0.0474 (4)
C40.38990 (7)0.01950 (15)0.51072 (9)0.0418 (4)
C50.37799 (6)0.16018 (14)0.52887 (9)0.0385 (4)
C60.42103 (10)0.20264 (18)0.58809 (12)0.0706 (6)
H6A0.42700.21980.63840.106*
H6B0.46840.22790.56370.106*
H6C0.37860.25830.56990.106*
C70.39904 (8)0.03138 (17)0.43884 (10)0.0524 (5)
H70.39330.03420.40220.063*
O80.41359 (7)0.15167 (12)0.42117 (8)0.0698 (4)
N90.36366 (6)0.27099 (12)0.48325 (7)0.0427 (3)
C100.28918 (7)0.27548 (16)0.44428 (9)0.0485 (4)
H10A0.25010.32350.47290.058*
H10B0.27100.18030.43520.058*
C110.30008 (8)0.35158 (16)0.37487 (10)0.0506 (4)
H11A0.33540.29840.34460.061*
H11B0.25020.35880.35040.061*
N120.33155 (6)0.49159 (12)0.38653 (7)0.0417 (3)
C130.40635 (7)0.48233 (16)0.42350 (9)0.0449 (4)
H13A0.42720.57630.43080.054*
H13B0.44320.43000.39430.054*
C140.39691 (8)0.41040 (16)0.49448 (9)0.0481 (4)
H14A0.44730.40220.51790.058*
H14B0.36270.46550.52500.058*
C150.33932 (9)0.56944 (18)0.31972 (10)0.0586 (5)
H15A0.37250.51810.28750.088*
H15B0.36190.66020.32920.088*
H15C0.28870.58130.29840.088*
C160.37949 (7)0.28622 (16)0.64745 (9)0.0441 (4)
C170.31364 (8)0.37036 (18)0.64642 (10)0.0541 (5)
H170.27170.34780.61690.065*
C180.31068 (10)0.48774 (19)0.68942 (11)0.0641 (5)
H180.26700.54610.68820.077*
C190.37206 (11)0.51924 (19)0.73435 (11)0.0712 (6)
H190.37000.59910.76310.085*
C200.43651 (10)0.4323 (2)0.73658 (10)0.0679 (5)
H200.47730.45260.76780.081*
C210.44102 (8)0.31600 (18)0.69310 (9)0.0542 (4)
H210.48480.25800.69430.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0510 (6)0.0348 (7)0.0443 (9)0.0023 (5)0.0005 (5)0.0027 (7)
N20.0608 (7)0.0412 (7)0.0522 (10)0.0021 (5)0.0014 (6)0.0104 (7)
C30.0460 (7)0.0369 (8)0.0592 (12)0.0010 (6)0.0036 (7)0.0031 (9)
C40.0430 (6)0.0336 (8)0.0487 (11)0.0025 (5)0.0012 (6)0.0002 (8)
C50.0374 (6)0.0333 (7)0.0449 (10)0.0029 (5)0.0012 (6)0.0007 (8)
C60.0827 (10)0.0402 (9)0.0888 (17)0.0069 (8)0.0030 (10)0.0140 (11)
C70.0571 (7)0.0400 (9)0.0599 (13)0.0068 (6)0.0025 (7)0.0051 (9)
O80.0849 (7)0.0421 (7)0.0823 (11)0.0028 (5)0.0116 (7)0.0181 (7)
N90.0454 (5)0.0322 (6)0.0503 (9)0.0062 (5)0.0128 (5)0.0032 (6)
C100.0425 (6)0.0428 (8)0.0602 (11)0.0067 (6)0.0113 (7)0.0043 (9)
C110.0513 (7)0.0465 (9)0.0539 (12)0.0036 (6)0.0160 (7)0.0004 (9)
N120.0448 (5)0.0360 (6)0.0444 (8)0.0025 (4)0.0066 (5)0.0026 (7)
C130.0442 (6)0.0367 (8)0.0537 (11)0.0041 (6)0.0084 (6)0.0036 (8)
C140.0564 (7)0.0353 (8)0.0526 (11)0.0091 (6)0.0155 (7)0.0030 (9)
C150.0707 (9)0.0535 (9)0.0516 (11)0.0013 (7)0.0105 (8)0.0085 (10)
C160.0518 (7)0.0412 (8)0.0393 (9)0.0028 (6)0.0083 (6)0.0001 (8)
C170.0532 (7)0.0559 (10)0.0531 (11)0.0049 (7)0.0080 (7)0.0026 (10)
C180.0740 (9)0.0576 (10)0.0606 (13)0.0113 (8)0.0231 (9)0.0026 (11)
C190.0965 (13)0.0579 (10)0.0590 (14)0.0083 (9)0.0274 (11)0.0154 (11)
C200.0754 (10)0.0754 (12)0.0529 (12)0.0176 (9)0.0050 (9)0.0138 (12)
C210.0562 (7)0.0587 (9)0.0477 (11)0.0031 (7)0.0002 (7)0.0040 (10)
Geometric parameters (Å, º) top
N1—C51.354 (2)N12—C151.457 (2)
N1—N21.3848 (16)N12—C131.4566 (16)
N1—C161.4247 (19)C13—C141.500 (2)
N2—C31.317 (2)C13—H13A0.9700
C3—C41.408 (2)C13—H13B0.9700
C3—C61.491 (2)C14—H14A0.9700
C4—C51.3921 (18)C14—H14B0.9700
C4—C71.436 (2)C15—H15A0.9600
C5—N91.3756 (18)C15—H15B0.9600
C6—H6A0.9600C15—H15C0.9600
C6—H6B0.9600C16—C171.381 (2)
C6—H6C0.9600C16—C211.384 (2)
C7—O81.2140 (18)C17—C181.374 (2)
C7—H70.9300C17—H170.9300
N9—C141.4551 (17)C18—C191.377 (3)
N9—C101.4678 (16)C18—H180.9300
C10—C111.496 (2)C19—C201.377 (3)
C10—H10A0.9700C19—H190.9300
C10—H10B0.9700C20—C211.373 (2)
C11—N121.4498 (18)C20—H200.9300
C11—H11A0.9700C21—H210.9300
C11—H11B0.9700
C5—N1—N2111.67 (12)C11—N12—C13110.00 (11)
C5—N1—C16129.89 (13)C15—N12—C13110.91 (11)
N2—N1—C16118.42 (14)N12—C13—C14110.61 (11)
C3—N2—N1105.07 (14)N12—C13—H13A109.5
N2—C3—C4111.64 (14)C14—C13—H13A109.5
N2—C3—C6119.98 (17)N12—C13—H13B109.5
C4—C3—C6128.37 (17)C14—C13—H13B109.5
C5—C4—C3105.38 (15)H13A—C13—H13B108.1
C5—C4—C7124.49 (15)N9—C14—C13109.16 (13)
C3—C4—C7129.24 (14)N9—C14—H14A109.8
N1—C5—N9126.34 (13)C13—C14—H14A109.8
N1—C5—C4106.21 (13)N9—C14—H14B109.8
N9—C5—C4127.44 (16)C13—C14—H14B109.8
C3—C6—H6A109.5H14A—C14—H14B108.3
C3—C6—H6B109.5N12—C15—H15A109.5
H6A—C6—H6B109.5N12—C15—H15B109.5
C3—C6—H6C109.5H15A—C15—H15B109.5
H6A—C6—H6C109.5N12—C15—H15C109.5
H6B—C6—H6C109.5H15A—C15—H15C109.5
O8—C7—C4126.37 (17)H15B—C15—H15C109.5
O8—C7—H7116.8C17—C16—C21120.72 (16)
C4—C7—H7116.8C17—C16—N1120.23 (14)
C5—N9—C14122.40 (12)C21—C16—N1119.05 (13)
C5—N9—C10118.97 (10)C18—C17—C16119.38 (16)
C14—N9—C10112.60 (11)C18—C17—H17120.3
N9—C10—C11109.62 (11)C16—C17—H17120.3
N9—C10—H10A109.7C17—C18—C19120.28 (16)
C11—C10—H10A109.7C17—C18—H18119.9
N9—C10—H10B109.7C19—C18—H18119.9
C11—C10—H10B109.7C18—C19—C20119.90 (18)
H10A—C10—H10B108.2C18—C19—H19120.0
N12—C11—C10111.00 (13)C20—C19—H19120.0
N12—C11—H11A109.4C21—C20—C19120.57 (17)
C10—C11—H11A109.4C21—C20—H20119.7
N12—C11—H11B109.4C19—C20—H20119.7
C10—C11—H11B109.4C20—C21—C16119.10 (15)
H11A—C11—H11B108.0C20—C21—H21120.4
C11—N12—C15111.71 (13)C16—C21—H21120.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···O8i0.972.603.4753 (19)151
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank the Institution of Excellence, Vijnana Bhavana, University of Mysore, Mysuru for providing the single-crystal X-ray diffractometer facility.

References

First citationBruker (2013). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChaudhary, P., Kumar, R., Verma, K., Singh, D., Yadav, V., Chhillar, A. K., Sharma, G. L. & Chandra, R. (2006). Bioorg. Med. Chem. 14, 1819–1826.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGirisha, K. S., Kalluraya, B., Narayana, V. & Padmashree (2010). Eur. J. Med. Chem. 45, 4640–4644.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUpadhayaya, R. S., Sinha, N., Jain, S., Kishore, N., Chandra, R. & Arora, S. K. (2004). Bioorg. Med. Chem. 12, 2225–2238.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds