organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoIUCrDATA
ISSN: 2414-3146

Di­amino­mesitylene

aLaboratoire de Cristallographie, Département de Physique, Université Frères Mentouri-Constantine, 25000 Constantine, Algeria, bLaboratoire de Synthèse des Molécules d'intérêts Biologiques, Département de Chimie, Faculté des Sciences Exactes, Université de Constantine 1, 25000 Constantine, Algeria, and cUMR 6226 CNRS–Université Rennes 1 `Sciences Chimiques de Rennes', Equipe `Matière Condensée et Systèmes Electroactifs', 263 Avenue du Général Leclerc, F-35042 Rennes, France
*Correspondence e-mail: ouardabrihi@yahoo.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 January 2016; accepted 29 February 2016; online 8 March 2016)

The title compound, C9H14N2 (systematic name: 2,4,6-tri­methyl­benzene-1,3-di­amine), is almost planar (r.m.s. deviation = 0.025 Å). In the crystal, mol­ecules are linked via N—H⋯N hydrogen bonds, forming zigzag chains along the b-axis direction. Only one of the four N-bonded H atoms forms a hydrogen bond, perhaps due to steric crowding. The chains are linked by C—H⋯π inter­actions, forming sheets lying parallel to the bc plane

3D view (loading...)
[Scheme 3D1]
Chemical scheme
[Scheme 1]

Structure description

Aromatic amines are a class of chemicals found in the plastic and chemical industries as byproducts of the manufacture of compounds such as polyurethane foams, dyes, pesticides, pharmaceuticals and semiconductors. They are also found in environmental pollution from diesel exhausts, the combustion of wood chips and rubber, tobacco smoke and substances in grilled meats and fish (DeBruin et al., 1999[DeBruin, L., Pawliszyn, J. & Josephy, P. (1999). Chem. Res. Toxicol. 12, 78-82.]; DeBruin & Josephy (2002[DeBruin, L. & Josephy, P. (2002). Environ. Health Perspect. 110, 119-128.]).

The structure of di­bromo­mesitylene (DBM) was resolved by neutron diffraction at 120 and 14 K. It crystallizes in the space group P21/n (Hernandez et al., 2003[Hernandez, O., Cousson, A., Plazanet, M., Nierlich, M. & Meinnel, J. (2003). Acta Cryst. C59, o445-o450.]). As part of our project which aims to study new substituted mesitylene or 1,3,5-tri­methyl­benzene compounds, for example 1,3,5-trimethyl-2,4-di­nitro­benzene (Brihi et al., 2015[Brihi, O., Hamdouni, N., Boudjada, A. & Meinnel, J. (2015). Acta Cryst. E71, o670-o671.]), we report herein on the synthesis and crystal structure of the title compound.

The mol­ecular structure of the title compound, also know as di­amino­mesitylene (DAM), is illustrated in the Fig. 1[link]. The non-H atoms are almost coplanar, r.m.s. deviation = 0.025 Å, with a maximum deviation of 0.044 (2) Å for atom C11, which lies between the amine groups. The crystal packing is illustrated in Fig. 2[link], which shows the zigzag N—H⋯N hydrogen-bonded chains along [010], which are linked via C—H⋯π inter­actions forming sheets parallel to the bc plane (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H22⋯N6i 0.89 2.37 3.170 (3) 150
N6—H61⋯Cgii 0.90 2.62 3.355 (2) 140
C11—H112⋯Cgiii 0.92 2.82 3.665 (2) 152
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x, -y, -z+2.
[Figure 1]
Figure 1
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The crystal packing of the title compound viewed along the a axis.

Synthesis and crystallization

In a round-bottom flask were placed 1 mmol (210 mg) of 2,4-di­nitro­mesitylene and 1.52 mmol (180 mg) of granulated tin. 10 ml of HCl was added in three equal parts to the mixture that was kept cool for 20–30 min. NaOH was added to the mixture until there was no further precipitation of tin hydroxide. The resulting amine was extracted with ether that was then evacuated by distillation. The title compound was obtained as colourless crystals on recrystallization from ethanol solution.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link].

Table 2
Experimental details

Crystal data
Chemical formula C9H14N2
Mr 150.22
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 8.1735 (7), 12.9313 (9), 8.7300 (8)
β (°) 105.803 (9)
V3) 887.83 (13)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.07
Crystal size (mm) 0.10 × 0.08 × 0.07
 
Data collection
Diffractometer Oxford Diffraction Xcalibur
No. of measured, independent and observed [I > 3.0σ(I)] reflections 3794, 1953, 1153
Rint 0.017
(sin θ/λ)max−1) 0.676
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.103, 0.88
No. of reflections 968
No. of parameters 101
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.13, −0.12
Computer programs: XCALIBUR (Oxford Diffraction, 2002[Oxford Diffraction (2002). XCALIBUR. Oxford Diffraction Ltd, Abingdon, England.]), CrysAlis PRO (Agilent, 2004[Agilent (2004). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]), CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.]).

Structural data


Experimental top

In a round-bottom flask were placed 1 mmol (210 mg) of 2,4-dinitromesitylene and 1.52 mmol (180 mg) of granulated tin. 10 ml of HCl was added in three equal parts to the mixture that was kept cool for 20–30 min. NaOH was added to the mixture until there was no further precipitation of tin hydroxide. The resulting amine was extracted with ether that was then evacuated by distillation. The title compound was obtained as colourless crystals on recrystallization from ethanol solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Structure description top

Aromatic amines are a class of chemicals found in the plastic and chemical industries as byproducts of the manufacture of compounds such as polyurethane foams, dyes, pesticides, pharmaceuticals and semiconductors. They are also found in environmental pollution from diesel exhausts, the combustion of wood chips and rubber, tobacco smoke and substances in grilled meats and fish (DeBruin et al., 1999; DeBruin & Josephy (2002).

The structure of dibromomesitylene (DBM) was resolved by neutron diffraction at 120 and 14 K. It crystallizes in the space group P21/n (Hernandez et al., 2003). As part of our project which aims to study new substituted mesitylene or 1,3,5-trimethylbenzene compounds, for example 1,3,5-trimethyl-2,4-dinitrobenzene (Brihi et al., 2015), we report herein on the synthesis and crystal structure of the title compound.

The molecular structure of the title compound, also know as diaminomesitylene (DAM), is illustrated in the Fig. 1. The non-H atoms are almost coplanar, r.m.s. deviation = 0.025 Å, with a maximum deviation of 0.044 (2) Å for atom C11, which lies between the amine groups. The crystal packing is illustrated in Fig. 2, which shows the zigzag N—H···N hydrogen-bonded chains along [010], which are linked via C—H···π interactions forming sheets parallel to the bc plane (Table 1).

Computing details top

Data collection: XCALIBUR (Oxford Diffraction, 2002); cell refinement: CrysAlis PRO (Agilent, 2004); data reduction: CrysAlis PRO (Agilent, 2004); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dotted lines (see Table 1).
2,4,6-Trimethylbenzene-1,3-diamine top
Crystal data top
C9H14N2F(000) = 328
Mr = 150.22Dx = 1.124 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.1735 (7) ÅCell parameters from 2457 reflections
b = 12.9313 (9) Åθ = 4.0–27.9°
c = 8.7300 (8) ŵ = 0.07 mm1
β = 105.803 (9)°T = 293 K
V = 887.83 (13) Å3Needle, colourless
Z = 40.10 × 0.08 × 0.07 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer
Rint = 0.017
Graphite monochromatorθmax = 28.7°, θmin = 3.4°
ω/2θ scansh = 1011
3794 measured reflectionsk = 1615
1953 independent reflectionsl = 1111
1153 reflections with I > 3.0σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 0.88 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.191E + 04 0.570E + 04 0.179E + 04 0.189E + 04
968 reflections(Δ/σ)max = 0.0002
101 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C9H14N2V = 887.83 (13) Å3
Mr = 150.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1735 (7) ŵ = 0.07 mm1
b = 12.9313 (9) ÅT = 293 K
c = 8.7300 (8) Å0.10 × 0.08 × 0.07 mm
β = 105.803 (9)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
1153 reflections with I > 3.0σ(I)
3794 measured reflectionsRint = 0.017
1953 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 0.88Δρmax = 0.13 e Å3
968 reflectionsΔρmin = 0.12 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N20.0520 (3)0.04877 (17)0.7012 (2)0.0722
N60.0592 (3)0.25972 (15)1.0272 (2)0.0605
C10.0030 (2)0.10506 (16)0.8621 (2)0.0432
C20.0612 (3)0.02612 (16)0.7813 (2)0.0461
C30.2327 (3)0.02171 (16)0.7811 (2)0.0492
C40.3405 (2)0.09757 (18)0.8639 (3)0.0516
C50.2888 (3)0.17661 (17)0.9470 (2)0.0490
C60.1174 (2)0.17840 (16)0.9474 (2)0.0443
C110.1830 (3)0.1110 (2)0.8552 (3)0.0628
C310.2977 (4)0.0630 (2)0.6941 (3)0.0751
C510.4127 (3)0.2583 (2)1.0309 (3)0.0725
H410.46000.09350.86400.0617*
H1110.21780.17230.88700.0980*
H1120.22270.06160.91250.0981*
H1130.25670.09860.74560.0980*
H3110.42110.05440.70910.1203*
H3120.27930.13320.73400.1205*
H3130.24280.06220.57810.1206*
H5110.37190.32621.00410.1103*
H5120.43480.25511.14980.1097*
H5130.52380.24441.01470.1102*
H210.14970.05300.72220.0861*
H220.01210.09690.64830.0861*
H610.14130.28921.10510.0743*
H620.02610.24201.05600.0743*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N20.0724 (14)0.0698 (14)0.0755 (14)0.0162 (11)0.0223 (11)0.0161 (11)
N60.0629 (12)0.0598 (12)0.0616 (11)0.0055 (9)0.0215 (10)0.0052 (9)
C10.0396 (10)0.0477 (12)0.0420 (10)0.0041 (9)0.0106 (9)0.0138 (9)
C20.0513 (11)0.0441 (11)0.0413 (10)0.0009 (10)0.0102 (9)0.0076 (10)
C30.0545 (12)0.0477 (12)0.0475 (11)0.0072 (11)0.0171 (10)0.0068 (10)
C40.0399 (10)0.0604 (14)0.0557 (13)0.0049 (10)0.0150 (9)0.0093 (11)
C50.0467 (11)0.0495 (12)0.0481 (12)0.0017 (10)0.0087 (9)0.0056 (10)
C60.0490 (11)0.0440 (12)0.0410 (10)0.0079 (9)0.0140 (9)0.0086 (9)
C110.0424 (11)0.0740 (16)0.0732 (16)0.0037 (11)0.0177 (11)0.0107 (13)
C310.0810 (18)0.0716 (17)0.0778 (19)0.0186 (14)0.0302 (15)0.0083 (14)
C510.0580 (14)0.0710 (16)0.0834 (18)0.0109 (13)0.0104 (13)0.0121 (14)
Geometric parameters (Å, º) top
N2—C21.390 (3)C4—H410.978
N2—H210.868C5—C61.401 (3)
N2—H220.888C5—C511.508 (3)
N6—C61.414 (3)C11—H1110.911
N6—H610.899C11—H1120.924
N6—H620.835C11—H1130.996
C1—C21.396 (3)C31—H3110.987
C1—C61.396 (3)C31—H3120.998
C1—C111.507 (3)C31—H3130.989
C2—C31.403 (3)C51—H5110.947
C3—C41.384 (3)C51—H5121.005
C3—C311.510 (3)C51—H5130.973
C4—C51.384 (3)
C2—N2—H21117.6N6—C6—C5119.0 (2)
C2—N2—H22117.5N6—C6—C1120.11 (18)
H21—N2—H22123.7C5—C6—C1120.81 (19)
C6—N6—H61113.9C1—C11—H111115.4
C6—N6—H62111.4C1—C11—H112116.3
H61—N6—H62113.6H111—C11—H112104.6
C2—C1—C6119.69 (17)C1—C11—H113111.7
C2—C1—C11119.8 (2)H111—C11—H113106.0
C6—C1—C11120.6 (2)H112—C11—H113101.5
C1—C2—N2119.47 (18)C3—C31—H311109.8
C1—C2—C3120.54 (19)C3—C31—H312112.1
N2—C2—C3120.0 (2)H311—C31—H312107.6
C2—C3—C4117.71 (19)C3—C31—H313112.5
C2—C3—C31121.2 (2)H311—C31—H313107.3
C4—C3—C31121.1 (2)H312—C31—H313107.3
C3—C4—C5123.71 (19)C5—C51—H511112.6
C3—C4—H41117.1C5—C51—H512112.4
C5—C4—H41119.1H511—C51—H512104.2
C4—C5—C6117.5 (2)C5—C51—H513109.3
C4—C5—C51120.7 (2)H511—C51—H513114.6
C6—C5—C51121.8 (2)H512—C51—H513103.4
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of benzene ring C1–C6.
D—H···AD—HH···AD···AD—H···A
N2—H22···N6i0.892.373.170 (3)150
N6—H61···Cgii0.902.623.355 (2)140
C11—H112···Cgiii0.922.823.665 (2)152
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+1/2, z+1/2; (iii) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of benzene ring C1–C6.
D—H···AD—HH···AD···AD—H···A
N2—H22···N6i0.892.373.170 (3)150
N6—H61···Cgii0.902.623.355 (2)140
C11—H112···Cgiii0.922.823.665 (2)152
Symmetry codes: (i) x, y1/2, z+3/2; (ii) x, y+1/2, z+1/2; (iii) x, y, z+2.

Experimental details

Crystal data
Chemical formulaC9H14N2
Mr150.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.1735 (7), 12.9313 (9), 8.7300 (8)
β (°) 105.803 (9)
V3)887.83 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.10 × 0.08 × 0.07
Data collection
DiffractometerOxford Diffraction Xcalibur
Absorption correction
No. of measured, independent and
observed [I > 3.0σ(I)] reflections
3794, 1953, 1153
Rint0.017
(sin θ/λ)max1)0.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.103, 0.88
No. of reflections968
No. of parameters101
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.12

Computer programs: XCALIBUR (Oxford Diffraction, 2002), CrysAlis PRO (Agilent, 2004), SIR2002 (Burla et al., 2005), CRYSTALS (Betteridge et al., 2003), CAMERON (Watkin et al., 1996).

 

Acknowledgements

This work was supported by the Laboratoire de Cristallographie Département de Physique, Université Fréres Mentouri-Constantine, Algeria. We would also like to thank Mr F. Saidi, Engineer at the Université Mentouri-Constantine, for assistance during the data collection on the Xcalibur X-ray diffractometer.

References

First citationAgilent (2004). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrihi, O., Hamdouni, N., Boudjada, A. & Meinnel, J. (2015). Acta Cryst. E71, o670–o671.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDeBruin, L. & Josephy, P. (2002). Environ. Health Perspect. 110, 119–128.  CrossRef PubMed CAS Google Scholar
First citationDeBruin, L., Pawliszyn, J. & Josephy, P. (1999). Chem. Res. Toxicol. 12, 78–82.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHernandez, O., Cousson, A., Plazanet, M., Nierlich, M. & Meinnel, J. (2003). Acta Cryst. C59, o445–o450.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2002). XCALIBUR. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoIUCrDATA
ISSN: 2414-3146
Follow IUCr Journals
Sign up for e-alerts
Follow IUCr on Twitter
Follow us on facebook
Sign up for RSS feeds