organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,4-Bis(methyl­sulfan­yl)naphthalene

aDepartment of Physics, Faculty of Arts and Sciences, Cumhuriyet University, 06532 Sivas, Turkey, bDepartment of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, Faculty of Arts and Sciences, Gaziosmanpaşa University, 60240 Tokat, Turkey, and dDepartamento Química Física y Analítica, Facultad de Química, Universidad Oviedo, C/ Julián Clavería, 8, 33006 Oviedo (Asturias), Spain
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 28 April 2009; accepted 17 May 2009; online 23 May 2009)

The mol­ecule of the title compound, C12H12S2, is close to planar, with the methyl C atoms deviating by 0.019 (1) and 0.221 (2) Å from the naphthalene mean plane. In the crystal structure, the shortest S⋯S contact of 3.6864 (9) Å is longer than the van der Waals contact distance.

Related literature

For general background, see: Underhill (1992[Underhill, A. E. (1992). J. Mater. Chem. 2, 1-11.]); Öncü et al. (2006[Öncü, A., Büyükkıdan, N. S., Büyükkıdan, B. & Çakmak, O. (2006). Turk. J. Chem. 30, 235-241.]). For related structures, see: Noreland et al. (1992[Noreland, J., Olovsson, G. & Olovsson, I. (1992). Acta Cryst. C48, 1459-1462.], 1993[Noreland, J., Olovsson, G. & Olovsson, I. (1993). Acta Cryst. C49, 168-171.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For van der Waals radii, see: Bondi (1964[Bondi, A. (1964). J. Phys. Chem. 68, 441-451.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12S2

  • Mr = 220.34

  • Monoclinic, P 21 /c

  • a = 15.203 (3) Å

  • b = 10.246 (2) Å

  • c = 7.1750 (14) Å

  • β = 99.43 (3)°

  • V = 1102.6 (4) Å3

  • Z = 4

  • Synchrotron radiation

  • λ = 0.75140 Å

  • μ = 0.44 mm−1

  • T = 153 K

  • 0.11 × 0.08 × 0.02 mm

Data collection
  • Bruker P4 diffractometer

  • Absorption correction: part of the refinement model (ΔF) (XABS2; Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.]) Tmin = 0.832, Tmax = 0.991

  • 5197 measured reflections

  • 3013 independent reflections

  • 2619 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.109

  • S = 1.07

  • 3013 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: XSCANS (Bruker, 1996[Bruker (1996). XSCANS. Bruker AXS Inc., Karlsruhe, Germany.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: direct methods using SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Molecular electronics have attracted considerable attention because they are used for production electronic switches, memory cells or sensors. The most extensive range of the set compounds is based on planar organic donor molecules containing S or Se atoms (e.g. Underhill, 1992; Noreland et al., 1992; Noreland et al., 1993; Öncü et al., 2006. In this study, the synthesis and structure of the title compound, (I), are reported.

As shown in Fig. 1, the naphthalene group (C1–C10) of the title molecule (I) is essentially planar, with maximum deviations of -0.014 (1), -0.014 (1) and 0.018 (1) Å for C4, C8 and C6, respectively. Deviations from planarity in the title molecule which were calculated to the least-squares plane of the naphthalene group are: 0.014 (1) Å for S1, 0.112 (1) Å for S2, -0.221 (2) Å for C11 and -0.019 (1) Å for C12. The bond lengths and angles in (I) show normal values (Allen et al., 1987). The molecular packing of (I) as seen down the a axis is illustrated in Fig. 2. There is only one S···S contact near the van der Waals contact distance, 3.6 Å (Bondi, 1964): S2···S2i 3.6864 (9) Å [symmetry code: (i) -x + 1, -y, -z].

Related literature top

For general background, see: Underhill (1992); Öncü et al. (2006). For related structures, see: Noreland et al. (1992, 1993). For bond-length data, see: Allen et al. (1987). For van der Waals radii, see: Bondi (1964).

Experimental top

The complete reaction was carried out under nitrogen atmosphere and 195 K. t-BuLi (10 ml, 14 mmol) solution was added to 1,4-dibromonaphthalene (1 g, 3.5 mmol) solved in dry THF (12 ml) with continuous stirring. Meanwhile, red colour was observed because of LiBr formation. Later, to the resulting reaction mixture was added dropwise (CH3S)2 (1.24 ml, 14 mmol). After 1 h, the reaction was ended. Reaction mixture warming to room temperature was extracted with Et2O (3 × 25 ml). The extract was dried over Na2SO4 and concentrated. 1,4-Bis(methylthio)naphthalene as white needle-like crystals was obtained by crystallization from crude product solved in dichloromethane:hexan (1:19) system (708 mg, 92%), m.p. 369–371 K (lit. 370–371 K).

Refinement top

H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and 0.9 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: XSCANS (Bruker, 1996); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: direct methods using SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. View of the molecular packing diagram of compound (I) viewed down b axis. H atoms have been omitted for clarity.
1,4-Bis(methylsulfanyl)naphthalene top
Crystal data top
C12H12S2F(000) = 464
Mr = 220.34Dx = 1.327 Mg m3
Monoclinic, P21/cSynchrotron radiation, λ = 0.75140 Å
Hall symbol: -P 2ybcCell parameters from 40396 reflections
a = 15.203 (3) Åθ = 1.0–27.0°
b = 10.246 (2) ŵ = 0.44 mm1
c = 7.1750 (14) ÅT = 153 K
β = 99.43 (3)°Prism, colourless
V = 1102.6 (4) Å30.11 × 0.08 × 0.02 mm
Z = 4
Data collection top
Bruker P4
diffractometer
3013 independent reflections
Radiation source: sealed tube2619 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 33.8°, θmin = 2.6°
Absorption correction: part of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
h = 2020
Tmin = 0.832, Tmax = 0.991k = 1414
5197 measured reflectionsl = 90
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.07 w = 1/[Σ2(Fo2) + (0.0553P)2 + 0.1466P]
where P = (Fo2 + 2Fc2)/3
3013 reflections(Δ/σ)max = 0.001
127 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C12H12S2V = 1102.6 (4) Å3
Mr = 220.34Z = 4
Monoclinic, P21/cSynchrotron radiation, λ = 0.75140 Å
a = 15.203 (3) ŵ = 0.44 mm1
b = 10.246 (2) ÅT = 153 K
c = 7.1750 (14) Å0.11 × 0.08 × 0.02 mm
β = 99.43 (3)°
Data collection top
Bruker P4
diffractometer
3013 independent reflections
Absorption correction: part of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
2619 reflections with I > 2σ(I)
Tmin = 0.832, Tmax = 0.991Rint = 0.019
5197 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.07Δρmax = 0.25 e Å3
3013 reflectionsΔρmin = 0.25 e Å3
127 parameters
Special details top

Experimental. Cubic fit to sin(theta)/lambda - 24 parameters

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.90863 (2)0.04680 (4)0.76728 (6)0.0671 (2)
S20.53023 (2)0.06992 (3)0.23860 (5)0.0558 (1)
C10.85913 (9)0.07840 (13)0.3828 (2)0.0578 (4)
C20.84525 (11)0.14096 (16)0.2131 (2)0.0700 (5)
C30.76299 (11)0.13355 (17)0.0952 (2)0.0714 (5)
C40.69472 (10)0.06351 (14)0.1496 (2)0.0592 (4)
C50.70573 (8)0.00085 (11)0.32680 (17)0.0468 (3)
C60.63478 (8)0.07293 (11)0.38797 (18)0.0469 (3)
C70.65018 (9)0.13631 (14)0.55763 (19)0.0562 (4)
C80.73388 (9)0.13004 (14)0.67599 (19)0.0585 (4)
C90.80296 (8)0.05983 (12)0.62517 (19)0.0511 (4)
C100.79008 (8)0.00626 (11)0.44685 (18)0.0478 (3)
C110.90238 (12)0.15800 (18)0.9562 (3)0.0818 (6)
C120.46292 (9)0.17829 (14)0.3515 (2)0.0625 (4)
H10.914900.083000.458300.0690*
H20.891200.189100.175600.0840*
H30.754400.176200.020700.0860*
H40.640300.058100.069100.0710*
H70.604500.184600.596000.0670*
H80.742300.174400.790600.0700*
H11A0.957800.157201.042400.1230*
H11B0.891000.244400.906200.1230*
H11C0.854900.132201.021700.1230*
H12A0.404100.182700.278700.0940*
H12B0.459400.146500.476000.0940*
H12C0.489200.263700.360400.0940*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0534 (2)0.0744 (3)0.0682 (3)0.0142 (2)0.0060 (2)0.0043 (2)
S20.0519 (2)0.0567 (2)0.0553 (2)0.0028 (1)0.0020 (1)0.0051 (1)
C10.0503 (7)0.0558 (7)0.0691 (8)0.0030 (5)0.0149 (6)0.0008 (6)
C20.0643 (8)0.0693 (9)0.0818 (10)0.0055 (7)0.0280 (7)0.0134 (7)
C30.0707 (9)0.0773 (10)0.0696 (9)0.0035 (7)0.0212 (7)0.0236 (8)
C40.0578 (7)0.0612 (7)0.0593 (8)0.0062 (5)0.0117 (6)0.0111 (6)
C50.0494 (6)0.0417 (5)0.0504 (6)0.0037 (4)0.0116 (4)0.0001 (4)
C60.0453 (6)0.0447 (5)0.0497 (6)0.0001 (4)0.0047 (4)0.0012 (4)
C70.0490 (6)0.0610 (7)0.0571 (7)0.0094 (5)0.0043 (5)0.0098 (6)
C80.0540 (7)0.0660 (8)0.0528 (7)0.0088 (6)0.0007 (5)0.0117 (6)
C90.0473 (6)0.0505 (6)0.0537 (7)0.0036 (5)0.0031 (5)0.0019 (5)
C100.0484 (6)0.0411 (5)0.0550 (6)0.0002 (4)0.0115 (5)0.0026 (5)
C110.0770 (10)0.0848 (11)0.0728 (10)0.0151 (9)0.0198 (8)0.0164 (8)
C120.0536 (7)0.0643 (8)0.0667 (8)0.0097 (6)0.0017 (6)0.0023 (6)
Geometric parameters (Å, º) top
S1—C91.7611 (14)C9—C101.4324 (18)
S1—C111.785 (2)C1—H10.9300
S2—C61.7657 (13)C2—H20.9300
S2—C121.7911 (15)C3—H30.9300
C1—C21.362 (2)C4—H40.9300
C1—C101.4204 (19)C7—H70.9300
C2—C31.392 (2)C8—H80.9300
C3—C41.370 (2)C11—H11A0.9600
C4—C51.4176 (19)C11—H11B0.9600
C5—C61.4341 (17)C11—H11C0.9600
C5—C101.4247 (18)C12—H12A0.9600
C6—C71.3656 (19)C12—H12B0.9600
C7—C81.411 (2)C12—H12C0.9600
C8—C91.3707 (19)
S2···S2i3.6864 (9)
C9—S1—C11103.55 (8)C1—C2—H2120.00
C6—S2—C12103.82 (7)C3—C2—H2120.00
C2—C1—C10121.32 (14)C2—C3—H3120.00
C1—C2—C3120.65 (15)C4—C3—H3120.00
C2—C3—C4120.16 (14)C3—C4—H4120.00
C3—C4—C5121.03 (14)C5—C4—H4119.00
C4—C5—C6121.99 (12)C6—C7—H7119.00
C4—C5—C10118.74 (12)C8—C7—H7119.00
C6—C5—C10119.27 (11)C7—C8—H8119.00
S2—C6—C5116.91 (10)C9—C8—H8119.00
S2—C6—C7123.72 (10)S1—C11—H11A109.00
C5—C6—C7119.34 (12)S1—C11—H11B109.00
C6—C7—C8121.39 (13)S1—C11—H11C109.00
C7—C8—C9121.24 (13)H11A—C11—H11B110.00
S1—C9—C8123.49 (11)H11A—C11—H11C109.00
S1—C9—C10117.36 (10)H11B—C11—H11C109.00
C8—C9—C10119.15 (12)S2—C12—H12A109.00
C1—C10—C5118.08 (12)S2—C12—H12B109.00
C1—C10—C9122.34 (12)S2—C12—H12C109.00
C5—C10—C9119.58 (11)H12A—C12—H12B109.00
C2—C1—H1119.00H12A—C12—H12C109.00
C10—C1—H1119.00H12B—C12—H12C109.00
C11—S1—C9—C87.08 (14)C10—C5—C6—C71.81 (18)
C11—S1—C9—C10172.38 (11)C4—C5—C10—C10.28 (18)
C12—S2—C6—C5175.91 (10)C4—C5—C10—C9179.02 (12)
C12—S2—C6—C75.94 (13)C6—C5—C10—C1179.94 (12)
C10—C1—C2—C31.4 (2)C6—C5—C10—C90.76 (17)
C2—C1—C10—C51.0 (2)S2—C6—C7—C8176.70 (11)
C2—C1—C10—C9179.70 (14)C5—C6—C7—C81.4 (2)
C1—C2—C3—C40.4 (2)C6—C7—C8—C90.1 (2)
C2—C3—C4—C50.9 (2)C7—C8—C9—S1179.38 (11)
C3—C4—C5—C6178.97 (14)C7—C8—C9—C101.2 (2)
C3—C4—C5—C101.3 (2)S1—C9—C10—C10.93 (17)
C4—C5—C6—S23.80 (16)S1—C9—C10—C5179.80 (10)
C4—C5—C6—C7177.96 (13)C8—C9—C10—C1178.56 (13)
C10—C5—C6—S2176.43 (9)C8—C9—C10—C50.71 (18)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···S10.932.603.0235 (16)108
C4—H4···S20.932.583.0090 (17)108

Experimental details

Crystal data
Chemical formulaC12H12S2
Mr220.34
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)15.203 (3), 10.246 (2), 7.1750 (14)
β (°) 99.43 (3)
V3)1102.6 (4)
Z4
Radiation typeSynchrotron, λ = 0.75140 Å
µ (mm1)0.44
Crystal size (mm)0.11 × 0.08 × 0.02
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(XABS2; Parkin et al., 1995)
Tmin, Tmax0.832, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
5197, 3013, 2619
Rint0.019
(sin θ/λ)max1)0.740
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.109, 1.07
No. of reflections3013
No. of parameters127
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.25

Computer programs: XSCANS (Bruker, 1996), SCALEPACK (Otwinowski & Minor, 1997), DENZO (Otwinowski & Minor, 1997) and SCALEPACK (Otwinowski & Minor, 1997), direct methods using SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

SGG gratefully acknowledges financial support from the MEC, projects MAT2006-01997 and Consolider Ingenio-2010, `Factoría Española de Cristalización', for the latter of which beam time provided by BM16 (ESRF) under proposal 16-01-706 is gratefully acknowledged.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBondi, A. (1964). J. Phys. Chem. 68, 441–451.  CrossRef CAS Web of Science Google Scholar
First citationBruker (1996). XSCANS. Bruker AXS Inc., Karlsruhe, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationNoreland, J., Olovsson, G. & Olovsson, I. (1992). Acta Cryst. C48, 1459–1462.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNoreland, J., Olovsson, G. & Olovsson, I. (1993). Acta Cryst. C49, 168–171.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationÖncü, A., Büyükkıdan, N. S., Büyükkıdan, B. & Çakmak, O. (2006). Turk. J. Chem. 30, 235–241.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUnderhill, A. E. (1992). J. Mater. Chem. 2, 1-11.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds