organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-chloro­benzyl­ammonium) tetra­kis(2,6-di­ethyl­anilinium) cyclo­hexa­phosphate tetra­hydrate

aLaboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, 7021 Zarzouna Bizerte, Tunisia
*Correspondence e-mail: sonia.abid@fsb.rnu.tn

(Received 21 February 2009; accepted 23 February 2009; online 28 February 2009)

In the crystal of the title hydrated mol­ecular salt, 2C7H9ClN+·4C10H16N+·P6O186−·4H2O, the packing consists of a three-dimensional O—H⋯O and N—H⋯O hydrogen-bonded network resulting from the association of anionic layers built up from centrosymmetric cyclohexaphosphate ions and water mol­ecules and the two types of organic cations.

Related literature

For related structures, see: Amri et al. (2007[Amri, O., Abid, S. & Rzaigui, M. (2007). Cryst. Res. Technol. 42, 930-936.], 2008[Amri, O., Abid, S. & Rzaigui, M. (2008). Phosphorus Sulfur Silicon Relat. Elem. 183, 1984-1993.]); Marouani & Rzaigui (2002[Marouani, H. & Rzaigui, M. (2002). Z. Kristallogr. New Cryst. Struct. 217, 277-278.]). For background, see: Kresge et al. (1992[Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. (1992). Nature (London), 359, 710-712.]); Katsoulis (1998[Katsoulis, D. E. (1998). Chem. Rev. 98, 359-387.]).

[Scheme 1]

Experimental

Crystal data
  • 2C7H9ClN+·4C10H16N+·P6O186−·4H2O

  • Mr = 1432.04

  • Monoclinic, C 2/c

  • a = 31.437 (2) Å

  • b = 14.178 (2) Å

  • c = 16.034 (2) Å

  • β = 99.60 (2)°

  • V = 7046.5 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Enraf–Nonius TurboCAD-4 diffractometer

  • Absorption correction: none

  • 11637 measured reflections

  • 8452 independent reflections

  • 5321 reflections with I > 2σ(I)

  • Rint = 0.035

  • 2 standard reflections frequency: 120 min intensity decay: 5%

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.144

  • S = 1.02

  • 8452 reflections

  • 417 parameters

  • H-atom parameters not refined

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O9i 0.89 1.80 2.685 (3) 171
N1—H1B⋯O2 0.89 2.03 2.758 (3) 138
N1—H1C⋯O4 0.89 2.13 2.935 (3) 151
N2—H2A⋯O4ii 0.89 1.94 2.827 (3) 172
N2—H2B⋯O1 0.89 2.05 2.887 (3) 156
N2—H2C⋯O7 0.89 1.94 2.809 (3) 166
N3—H3A⋯O5iii 0.89 1.89 2.762 (3) 165
N3—H3B⋯O9 0.89 1.93 2.799 (3) 164
N3—H3C⋯O10 0.89 1.99 2.800 (5) 151
O10—H1⋯O11 0.85 2.22 2.923 (6) 140
O10—H2⋯O11iv 0.86 2.25 2.831 (5) 125
O11—H6⋯O2v 0.85 2.23 2.740 (4) 118
O11—H7⋯O5iii 0.85 2.17 2.781 (4) 129
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (v) x, y+1, z.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The synthesis and characterization of organic–inorganic solid state hybrid materials has attracted great attention due to their structural diversity (Kresge et al., 1992) and widely promising potential areas in chemistry, biology and material science (Katsoulis, 1998). As part of our studies in this area, we report here synthesis and crystal structure of the the title compound, (I), (Fig. 1).

The centrosymmetric cyclohexaphosphate anion and the two water molecules are linked together by O—H···O hydrogen bonds to form inorganic layers parallel to the (b,c) plane. On both sides of each inorganic layer, are grafted the organic cations compensating their negatives charges (Fig. 2). Inside this arrangement, the geometry of the phosphoric rings is comparable to those found in [2,6-(CH3)2C6H3NH3]4[2,6-(C2H5)2C6H3NH3]~2P6O18.4H2O (Amri et al. 2007) and (1,6NH3C6H12NH3)(C6H5NH3)4P6O18.6H2O (Marouani et al. 2002). In the title compound, the phosphoric rings have the same internal symmetry and thus built up by only three independent PO4tetrahedra P1O4, P2O4 and P3O4. In the PO4 tetrahedra, the P—O distances range in [1.470 (3) - 1.610 (2) Å] and the O—P—O bond angles in [99.4 (2) - 121.2 (2)°]. It is the same for the P—P distances ranging from 2.901 (1) and 2.937 (1) Å which are comparable to values generally measured. For the organic cations, the main features measured are similar to distances and angles usually reported for such molecules (Amri et al.2007, Amri et al. 2008). The phenyl rings of these groups are almost planar, with mean deviations of ± 0.004 and ± 0.011Å for 2,6- diethylphenylammonium and ± 0.003 Å for 4-chlorobenzylanilinium.

Related literature top

For related structures, see: Amri et al. (2007, 2008); Marouani & Rzaigui (2002). For background, see: Kresge et al. (1992); Katsoulis (1998).

Experimental top

Cyclohexaphosphoric acid (4.8 mmol) was slowly added to an ethanolic solution of 2,6-diethylaniline (3.16 ml; 19.2 mmol) and 4-chlorobenzylaniline (1.16 ml, 9.6 mmol) in a molar ratio of 2:1 respectively. The obtained solution was slowly evaporated at room temperature. After some days, colourless prisms of (I) were formed. The cyclohexaphosphoric acid is freshly prepared by passing a solution of Li6P6O18(3 g, 4.8 mmol) through an ion exchange resin in its H-state (Amberlite IR 120).

Refinement top

The water H atoms were located in a difference map and freely refined. The other H atoms were positioned geometrically (N—H = 0.89, C—H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl C).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids for the non-H atoms drawn at the 30% probability level (symmetry code: (i) 1/2 - x, 1/2 - y, 1 -z).
[Figure 2] Fig. 2. Projection of (I) along b axis.
Bis(4-chlorobenzylammonium) tetrakis(2,6-diethylanilinium) cyclohexaphosphate tetrahydrate top
Crystal data top
2C7H9ClN+·4C10H16N+·P6O186·4H2OF(000) = 3024
Mr = 1432.04Dx = 1.350 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 31.437 (2) Åθ = 9–11°
b = 14.178 (2) ŵ = 0.30 mm1
c = 16.034 (2) ÅT = 293 K
β = 99.60 (2)°Prism, colourless
V = 7046.5 (14) Å30.20 × 0.18 × 0.16 mm
Z = 4
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.035
Radiation source: Enraf Nonius FR590θmax = 28.0°, θmin = 2.1°
Graphite monochromatorh = 4141
non–profiled ω scansk = 018
11637 measured reflectionsl = 521
8452 independent reflections2 standard reflections every 120 min
5321 reflections with I > 2σ(I) intensity decay: 5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters not refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0697P)2 + 2.2936P]
where P = (Fo2 + 2Fc2)/3
8452 reflections(Δ/σ)max < 0.001
417 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
2C7H9ClN+·4C10H16N+·P6O186·4H2OV = 7046.5 (14) Å3
Mr = 1432.04Z = 4
Monoclinic, C2/cMo Kα radiation
a = 31.437 (2) ŵ = 0.30 mm1
b = 14.178 (2) ÅT = 293 K
c = 16.034 (2) Å0.20 × 0.18 × 0.16 mm
β = 99.60 (2)°
Data collection top
Enraf–Nonius TurboCAD-4
diffractometer
Rint = 0.035
11637 measured reflections2 standard reflections every 120 min
8452 independent reflections intensity decay: 5%
5321 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.144H-atom parameters not refined
S = 1.02Δρmax = 0.57 e Å3
8452 reflectionsΔρmin = 0.44 e Å3
417 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.01382 (3)0.69163 (8)0.12825 (8)0.0880 (3)
P10.24807 (2)0.07584 (5)0.44736 (4)0.03164 (16)
P20.23420 (2)0.23566 (5)0.33302 (4)0.03092 (15)
P30.293786 (19)0.38486 (4)0.40635 (4)0.03042 (15)
O10.28646 (5)0.04571 (12)0.50699 (11)0.0400 (4)
O20.22756 (7)0.01330 (14)0.37887 (13)0.0541 (5)
O30.26078 (5)0.17399 (13)0.40739 (12)0.0414 (4)
O40.18744 (5)0.22936 (14)0.33497 (12)0.0428 (4)
O50.24898 (7)0.21336 (15)0.25302 (12)0.0524 (5)
O60.24927 (6)0.33887 (13)0.36243 (14)0.0485 (5)
O70.33084 (5)0.32302 (13)0.39994 (12)0.0423 (4)
O80.28898 (6)0.38724 (15)0.50341 (11)0.0462 (5)
O90.29240 (6)0.48264 (13)0.37325 (13)0.0454 (5)
O100.19365 (13)0.6949 (3)0.4542 (2)0.1059 (10)
H10.21470.73340.46200.21 (4)*
H20.19880.65450.49480.15 (3)*
O110.25125 (15)0.8271 (2)0.38834 (19)0.1238 (15)
H60.24110.86420.34780.37 (7)*
H70.26590.78510.36790.58 (12)*
N10.16392 (7)0.05296 (16)0.24302 (14)0.0422 (5)
H1A0.17920.03620.20340.063*
H1B0.17340.02140.29050.063*
H1C0.16690.11460.25270.063*
N20.35074 (6)0.19299 (15)0.53288 (14)0.0363 (5)
H2A0.33950.22280.57290.054*
H2B0.33770.13760.52210.054*
H2C0.34700.22780.48600.054*
N30.21272 (7)0.57295 (18)0.32809 (16)0.0500 (6)
H3A0.22050.61990.29700.075*
H3B0.23600.54070.35120.075*
H3C0.19980.59650.36880.075*
C10.11824 (8)0.0310 (2)0.21416 (17)0.0415 (6)
C20.10027 (9)0.0469 (2)0.24718 (19)0.0507 (7)
C30.05691 (11)0.0647 (3)0.2167 (2)0.0688 (10)
H30.04360.11630.23730.083*
C40.03350 (11)0.0076 (3)0.1571 (3)0.0799 (12)
H40.00450.02060.13820.096*
C50.05230 (11)0.0683 (3)0.1251 (2)0.0753 (11)
H50.03600.10590.08430.090*
C60.09543 (10)0.0899 (2)0.15295 (19)0.0530 (8)
C70.11533 (14)0.1759 (3)0.1192 (3)0.0777 (11)
H7A0.14590.16450.12070.093*
H7B0.10230.18530.06060.093*
C80.10995 (18)0.2644 (3)0.1678 (3)0.1045 (16)
H8A0.07990.28060.16090.157*
H8B0.12560.31490.14700.157*
H8C0.12090.25430.22670.157*
C90.12659 (12)0.1088 (3)0.3131 (2)0.0683 (10)
H9A0.14340.06860.35510.082*
H9B0.14670.14480.28600.082*
C100.10082 (16)0.1772 (3)0.3583 (3)0.0936 (13)
H10A0.08110.14250.38640.140*
H10B0.12020.21280.39910.140*
H10C0.08490.21940.31770.140*
C110.39714 (8)0.17773 (19)0.56208 (17)0.0378 (6)
C120.42153 (9)0.2542 (2)0.59790 (19)0.0459 (7)
C130.46474 (11)0.2379 (3)0.6290 (2)0.0671 (10)
H130.48180.28690.65450.081*
C140.48285 (10)0.1505 (3)0.6226 (3)0.0786 (12)
H140.51190.14120.64380.094*
C150.45849 (10)0.0770 (3)0.5855 (2)0.0669 (10)
H150.47130.01860.58080.080*
C160.41455 (9)0.0887 (2)0.5545 (2)0.0461 (7)
C170.40416 (10)0.3535 (2)0.6000 (2)0.0547 (8)
H17A0.37290.35120.59350.066*
H17B0.41500.38170.65450.066*
C180.41691 (12)0.4142 (2)0.5311 (2)0.0675 (10)
H18A0.44780.41470.53600.101*
H18B0.40670.47730.53640.101*
H18C0.40440.38910.47690.101*
C190.38797 (10)0.0071 (2)0.5151 (3)0.0635 (9)
H19A0.36220.00330.54070.076*
H19B0.37880.02100.45550.076*
C200.40905 (15)0.0872 (3)0.5220 (3)0.0992 (15)
H20A0.43220.08770.48970.149*
H20B0.38820.13460.50060.149*
H20C0.42030.10020.58030.149*
C210.14034 (9)0.5570 (2)0.23882 (18)0.0453 (7)
C220.13925 (9)0.6432 (2)0.19784 (18)0.0470 (7)
H220.16510.67340.19350.056*
C230.10094 (9)0.6850 (2)0.16347 (19)0.0488 (7)
H230.10070.74270.13580.059*
C240.06256 (9)0.6395 (2)0.1708 (2)0.0535 (8)
C250.06304 (11)0.5540 (3)0.2110 (2)0.0649 (9)
H250.03720.52380.21540.078*
C260.10184 (11)0.5128 (2)0.2447 (2)0.0579 (8)
H260.10210.45480.27180.070*
C270.18274 (10)0.5098 (2)0.2740 (2)0.0574 (8)
H27A0.17710.45500.30670.069*
H27B0.19630.48810.22740.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0443 (4)0.0973 (8)0.1139 (9)0.0033 (5)0.0115 (5)0.0025 (7)
P10.0321 (3)0.0326 (3)0.0294 (3)0.0001 (3)0.0026 (3)0.0001 (3)
P20.0332 (3)0.0313 (3)0.0282 (3)0.0024 (3)0.0053 (2)0.0001 (3)
P30.0303 (3)0.0308 (3)0.0303 (3)0.0005 (2)0.0055 (2)0.0023 (3)
O10.0369 (9)0.0413 (10)0.0400 (10)0.0045 (8)0.0013 (8)0.0042 (8)
O20.0625 (13)0.0426 (11)0.0508 (12)0.0012 (10)0.0090 (10)0.0127 (10)
O30.0355 (9)0.0458 (10)0.0419 (10)0.0050 (8)0.0034 (8)0.0130 (9)
O40.0337 (9)0.0540 (11)0.0390 (10)0.0053 (8)0.0009 (8)0.0041 (9)
O50.0746 (13)0.0520 (12)0.0342 (10)0.0114 (10)0.0196 (10)0.0005 (9)
O60.0363 (9)0.0353 (10)0.0686 (14)0.0020 (8)0.0063 (9)0.0110 (10)
O70.0352 (9)0.0416 (10)0.0509 (11)0.0047 (8)0.0091 (8)0.0015 (9)
O80.0359 (9)0.0754 (14)0.0281 (9)0.0093 (9)0.0074 (8)0.0112 (9)
O90.0457 (10)0.0401 (10)0.0529 (12)0.0012 (8)0.0149 (9)0.0137 (9)
O100.110 (3)0.124 (3)0.077 (2)0.029 (2)0.0021 (17)0.005 (2)
O110.245 (5)0.0640 (17)0.0534 (16)0.041 (2)0.001 (2)0.0106 (15)
N10.0381 (11)0.0459 (13)0.0421 (13)0.0004 (10)0.0054 (10)0.0121 (11)
N20.0335 (10)0.0355 (11)0.0391 (12)0.0028 (9)0.0036 (9)0.0012 (10)
N30.0403 (12)0.0528 (15)0.0560 (15)0.0045 (11)0.0052 (11)0.0182 (13)
C10.0349 (13)0.0500 (16)0.0398 (15)0.0021 (12)0.0070 (11)0.0160 (13)
C20.0473 (16)0.0577 (18)0.0482 (17)0.0016 (14)0.0107 (14)0.0150 (15)
C30.0480 (18)0.079 (2)0.082 (3)0.0122 (18)0.0180 (18)0.010 (2)
C40.0417 (18)0.110 (3)0.084 (3)0.006 (2)0.0015 (19)0.011 (3)
C50.0507 (19)0.104 (3)0.066 (2)0.018 (2)0.0057 (17)0.006 (2)
C60.0488 (16)0.064 (2)0.0454 (17)0.0071 (15)0.0059 (14)0.0089 (16)
C70.088 (3)0.077 (3)0.063 (2)0.001 (2)0.002 (2)0.014 (2)
C80.128 (4)0.077 (3)0.096 (3)0.013 (3)0.019 (3)0.003 (3)
C90.068 (2)0.062 (2)0.074 (2)0.0057 (18)0.0119 (19)0.0038 (19)
C100.121 (4)0.079 (3)0.084 (3)0.007 (3)0.025 (3)0.007 (2)
C110.0330 (12)0.0441 (15)0.0357 (14)0.0007 (11)0.0037 (11)0.0040 (12)
C120.0408 (14)0.0540 (18)0.0434 (16)0.0078 (13)0.0081 (12)0.0010 (14)
C130.0469 (18)0.073 (2)0.076 (2)0.0179 (17)0.0053 (16)0.001 (2)
C140.0331 (16)0.083 (3)0.112 (3)0.0008 (17)0.0095 (18)0.017 (2)
C150.0386 (16)0.061 (2)0.099 (3)0.0131 (15)0.0040 (17)0.012 (2)
C160.0367 (13)0.0446 (16)0.0562 (18)0.0054 (12)0.0053 (13)0.0064 (14)
C170.0558 (18)0.0472 (17)0.063 (2)0.0112 (14)0.0162 (16)0.0176 (16)
C180.069 (2)0.055 (2)0.078 (2)0.0131 (17)0.0102 (19)0.0027 (19)
C190.0516 (18)0.0449 (18)0.091 (3)0.0065 (14)0.0014 (18)0.0006 (18)
C200.096 (3)0.062 (2)0.134 (4)0.014 (2)0.000 (3)0.017 (3)
C210.0502 (16)0.0464 (16)0.0386 (15)0.0045 (13)0.0054 (13)0.0021 (13)
C220.0412 (14)0.0513 (17)0.0488 (17)0.0047 (13)0.0086 (13)0.0067 (14)
C230.0460 (15)0.0502 (17)0.0491 (17)0.0025 (13)0.0048 (13)0.0070 (14)
C240.0416 (15)0.062 (2)0.0537 (19)0.0031 (14)0.0010 (14)0.0070 (16)
C250.0508 (18)0.068 (2)0.075 (2)0.0224 (17)0.0086 (17)0.0006 (19)
C260.064 (2)0.0505 (18)0.059 (2)0.0121 (16)0.0089 (16)0.0057 (16)
C270.0620 (19)0.0477 (18)0.061 (2)0.0079 (15)0.0047 (16)0.0074 (16)
Geometric parameters (Å, º) top
O7—P31.4751 (18)C1—C61.393 (4)
O6—P21.5854 (19)C2—C31.392 (4)
O6—P31.5970 (19)C2—C91.510 (5)
O1—P11.4724 (18)C6—C51.389 (5)
O3—P21.5975 (19)C6—C71.512 (5)
O3—P11.6101 (19)C5—C41.368 (6)
O4—P21.4783 (18)C5—H50.9300
O8—P31.5889 (18)C3—C41.369 (5)
O8—P1i1.6003 (19)C3—H30.9300
O9—P31.4825 (19)C4—H40.9300
O5—P21.470 (2)C9—C101.522 (5)
O2—P11.474 (2)C9—H9A0.9700
P1—O8i1.6003 (19)C9—H9B0.9700
N2—C111.472 (3)C7—C81.501 (6)
N2—H2A0.8900C7—H7A0.9700
N2—H2B0.8900C7—H7B0.9700
N2—H2C0.8900C10—H10A0.9600
C11—C161.389 (4)C10—H10B0.9600
C11—C121.395 (4)C10—H10C0.9600
C12—C131.386 (4)C8—H8A0.9600
C12—C171.512 (4)C8—H8B0.9600
C16—C151.398 (4)C8—H8C0.9600
C16—C191.503 (4)Cl1—C241.735 (3)
C17—C181.506 (5)N3—C271.473 (4)
C17—H17A0.9700N3—H3A0.8900
C17—H17B0.9700N3—H3B0.8900
C19—C201.489 (5)N3—H3C0.8900
C19—H19A0.9700C23—C221.372 (4)
C19—H19B0.9700C23—C241.390 (4)
C15—C141.369 (5)C23—H230.9300
C15—H150.9300C22—C211.385 (4)
C14—C131.374 (5)C22—H220.9300
C14—H140.9300C21—C261.380 (4)
C13—H130.9300C21—C271.514 (4)
C18—H18A0.9600C24—C251.372 (5)
C18—H18B0.9600C25—C261.379 (5)
C18—H18C0.9600C25—H250.9300
C20—H20A0.9600C27—H27A0.9700
C20—H20B0.9600C27—H27B0.9700
C20—H20C0.9600C26—H260.9300
N1—C11.467 (3)O11—H60.8600
N1—H1A0.8900O11—H70.8500
N1—H1B0.8900O10—H10.8500
N1—H1C0.8900O10—H20.8600
C1—C21.385 (4)
P2—O6—P3134.79 (12)C2—C1—C6123.5 (3)
P2—O3—P1129.53 (11)C2—C1—N1119.3 (3)
P3—O8—P1i133.32 (12)C6—C1—N1117.2 (3)
O5—P2—O4117.76 (12)C1—C2—C3116.7 (3)
O5—P2—O6109.61 (12)C1—C2—C9121.3 (3)
O4—P2—O6107.36 (11)C3—C2—C9122.0 (3)
O5—P2—O3109.36 (11)C5—C6—C1117.0 (3)
O4—P2—O3110.45 (10)C5—C6—C7120.2 (3)
O6—P2—O3100.95 (10)C1—C6—C7122.7 (3)
O7—P3—O9120.48 (11)C4—C5—C6120.8 (4)
O7—P3—O8106.62 (11)C4—C5—H5119.6
O9—P3—O8109.20 (12)C6—C5—H5119.6
O7—P3—O6111.75 (11)C4—C3—C2121.2 (4)
O9—P3—O6104.64 (11)C4—C3—H3119.4
O8—P3—O6102.77 (11)C2—C3—H3119.4
O1—P1—O2121.24 (11)C5—C4—C3120.7 (3)
O1—P1—O8i111.08 (10)C5—C4—H4119.6
O2—P1—O8i107.48 (12)C3—C4—H4119.6
O1—P1—O3106.16 (10)C2—C9—C10115.5 (3)
O2—P1—O3109.28 (11)C2—C9—H9A108.4
O8i—P1—O399.39 (11)C10—C9—H9A108.4
C11—N2—H2A109.5C2—C9—H9B108.4
C11—N2—H2B109.5C10—C9—H9B108.4
H2A—N2—H2B109.5H9A—C9—H9B107.5
C11—N2—H2C109.5C8—C7—C6113.5 (4)
H2A—N2—H2C109.5C8—C7—H7A108.9
H2B—N2—H2C109.5C6—C7—H7A108.9
C16—C11—C12123.0 (2)C8—C7—H7B108.9
C16—C11—N2119.3 (2)C6—C7—H7B108.9
C12—C11—N2117.7 (2)H7A—C7—H7B107.7
C13—C12—C11117.2 (3)C9—C10—H10A109.5
C13—C12—C17118.9 (3)C9—C10—H10B109.5
C11—C12—C17123.8 (3)H10A—C10—H10B109.5
C11—C16—C15117.2 (3)C9—C10—H10C109.5
C11—C16—C19122.4 (2)H10A—C10—H10C109.5
C15—C16—C19120.3 (3)H10B—C10—H10C109.5
C18—C17—C12112.0 (3)C7—C8—H8A109.5
C18—C17—H17A109.2C7—C8—H8B109.5
C12—C17—H17A109.2H8A—C8—H8B109.5
C18—C17—H17B109.2C7—C8—H8C109.5
C12—C17—H17B109.2H8A—C8—H8C109.5
H17A—C17—H17B107.9H8B—C8—H8C109.5
C20—C19—C16116.8 (3)C27—N3—H3A109.5
C20—C19—H19A108.1C27—N3—H3B109.5
C16—C19—H19A108.1H3A—N3—H3B109.5
C20—C19—H19B108.1C27—N3—H3C109.5
C16—C19—H19B108.1H3A—N3—H3C109.5
H19A—C19—H19B107.3H3B—N3—H3C109.5
C14—C15—C16120.8 (3)C22—C23—C24118.8 (3)
C14—C15—H15119.6C22—C23—H23120.6
C16—C15—H15119.6C24—C23—H23120.6
C15—C14—C13120.7 (3)C23—C22—C21121.4 (3)
C15—C14—H14119.7C23—C22—H22119.3
C13—C14—H14119.7C21—C22—H22119.3
C14—C13—C12121.1 (3)C26—C21—C22118.7 (3)
C14—C13—H13119.4C26—C21—C27120.1 (3)
C12—C13—H13119.4C22—C21—C27121.2 (3)
C17—C18—H18A109.5C25—C24—C23120.5 (3)
C17—C18—H18B109.5C25—C24—Cl1120.1 (3)
H18A—C18—H18B109.5C23—C24—Cl1119.4 (3)
C17—C18—H18C109.5C24—C25—C26119.9 (3)
H18A—C18—H18C109.5C24—C25—H25120.1
H18B—C18—H18C109.5C26—C25—H25120.1
C19—C20—H20A109.5N3—C27—C21112.8 (2)
C19—C20—H20B109.5N3—C27—H27A109.0
H20A—C20—H20B109.5C21—C27—H27A109.0
C19—C20—H20C109.5N3—C27—H27B109.0
H20A—C20—H20C109.5C21—C27—H27B109.0
H20B—C20—H20C109.5H27A—C27—H27B107.8
C1—N1—H1A109.5C25—C26—C21120.6 (3)
C1—N1—H1B109.5C25—C26—H26119.7
H1A—N1—H1B109.5C21—C26—H26119.7
C1—N1—H1C109.5H6—O11—H7107.00
H1A—N1—H1C109.5H1—O10—H2106.00
H1B—N1—H1C109.5
Symmetry code: (i) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O9ii0.891.802.685 (3)171
N1—H1B···O20.892.032.758 (3)138
N1—H1C···O40.892.132.935 (3)151
N2—H2A···O4i0.891.942.827 (3)172
N2—H2B···O10.892.052.887 (3)156
N2—H2C···O70.891.942.809 (3)166
N3—H3A···O5iii0.891.892.762 (3)165
N3—H3B···O90.891.932.799 (3)164
N3—H3C···O100.891.992.800 (5)151
O10—H1···O110.852.222.923 (6)140
O10—H2···O11iv0.862.252.831 (5)125
O11—H6···O2v0.852.232.740 (4)118
O11—H7···O5iii0.852.172.781 (4)129
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z+1; (v) x, y+1, z.

Experimental details

Crystal data
Chemical formula2C7H9ClN+·4C10H16N+·P6O186·4H2O
Mr1432.04
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)31.437 (2), 14.178 (2), 16.034 (2)
β (°) 99.60 (2)
V3)7046.5 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.30
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerEnraf–Nonius TurboCAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11637, 8452, 5321
Rint0.035
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.144, 1.02
No. of reflections8452
No. of parameters417
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.57, 0.44

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O9i0.891.802.685 (3)171
N1—H1B···O20.892.032.758 (3)138
N1—H1C···O40.892.132.935 (3)151
N2—H2A···O4ii0.891.942.827 (3)172
N2—H2B···O10.892.052.887 (3)156
N2—H2C···O70.891.942.809 (3)166
N3—H3A···O5iii0.891.892.762 (3)165
N3—H3B···O90.891.932.799 (3)164
N3—H3C···O100.891.992.800 (5)151
O10—H1···O110.852.222.923 (6)140
O10—H2···O11iv0.862.252.831 (5)125
O11—H6···O2v0.852.232.740 (4)118
O11—H7···O5iii0.852.172.781 (4)129
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+3/2, z+1; (v) x, y+1, z.
 

References

First citationAmri, O., Abid, S. & Rzaigui, M. (2007). Cryst. Res. Technol. 42, 930–936.  Web of Science CSD CrossRef CAS Google Scholar
First citationAmri, O., Abid, S. & Rzaigui, M. (2008). Phosphorus Sulfur Silicon Relat. Elem. 183, 1984–1993.  Web of Science CSD CrossRef CAS Google Scholar
First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKatsoulis, D. E. (1998). Chem. Rev. 98, 359–387.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. (1992). Nature (London), 359, 710–712.  CrossRef CAS Web of Science Google Scholar
First citationMarouani, H. & Rzaigui, M. (2002). Z. Kristallogr. New Cryst. Struct. 217, 277–278.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds