organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-Tetra­decyl­pyridinium bromide monohydrate

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: ewtan@chemistry.otago.ac.nz

(Received 23 October 2008; accepted 20 November 2008; online 26 November 2008)

In the title compound, C19H34N+·Br·H2O, the dihedral angle between the trans-planar alkyl side chain and the pyridinium ring is 52.73 (7)°. In the crystal structure, O—H⋯Br, C—H⋯Br and C—H⋯O hydrogen bonds form a network, while the hydro­phobic alkyl chains inter­digitate, forming bilayers.

Related literature

For a related structure see: Vongbupnimit et al. (1995[Vongbupnimit, K., Noguchi, K. & Okuyama, K. (1995). Acta Cryst. C51, 1940-1941.]). For details of critical micelle concentrations in quaternary nitro­gen species, see: González-Pérez et. al. (2006[González-Pérez, A., Varela, L. M., Garcia, M. & Rodriguez, J. R. (2006). J. Colloid Interface Sci. 293, 213-221.]). Fo lipid bilayers, see: Israelachvili (1985[Israelachvili, J. N. (1985). Intermolecular and Surface Forces, 2nd ed. New York: Academic Press.]). For a discussion of hydrogen bonding, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C19H34N+·Br·H2O

  • Mr = 374.40

  • Triclinic, [P \overline 1]

  • a = 5.5061 (13) Å

  • b = 7.4731 (18) Å

  • c = 25.039 (7) Å

  • α = 83.464 (15)°

  • β = 85.196 (14)°

  • γ = 79.439 (14)°

  • V = 1004.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.05 mm−1

  • T = 92 (2) K

  • 0.21 × 0.11 × 0.02 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.767, Tmax = 0.960

  • 16693 measured reflections

  • 4039 independent reflections

  • 3598 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.074

  • S = 1.09

  • 4039 reflections

  • 208 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1X⋯Br1 0.80 (3) 2.53 (3) 3.336 (2) 178 (3)
O1—H1Y⋯Br1i 0.77 (4) 2.56 (4) 3.330 (2) 174 (3)
C1—H1⋯Br1ii 0.95 2.87 3.577 (2) 133
C3—H3⋯Br1iii 0.95 2.85 3.783 (3) 168
C4—H4⋯O1iii 0.95 2.55 3.325 (3) 138
C5—H5⋯O1 0.95 2.27 3.207 (3) 171
C6—H6B⋯Br1i 0.99 2.82 3.745 (2) 155
Symmetry codes: (i) x+1, y, z; (ii) x+2, y-1, z; (iii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2006[Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2008[Westrip, S. P. (2008). publCIF. In preparation.]).

Supporting information


Comment top

In a study to evaluate the physical properties of quaternary nitrogen species in solution, 1-tetradecylpyridinium bromide (I) was synthesized. Crystals were grown to investigate the most stable structure when the concentration of the salt was at its highest and thus suggest possible structures formed at concentrations above the critical micelle concentration, 2.77 × 10 -3 molL-1 at 298 K, (González-Pérez et. al., 2006).

The asymmetric unit of (I), Figure 1, comprises the desired alkyl pyridinium cation with a bromide counter anion and a water molecule of crystallization. The hydrophobic C14 alkyl chain has a trans-planar arrangement. This is the expected conformation, and is very similar to that of 1-dodeylpyridinium chloride monohydrate (Vongbupnimit et al., 1995). The dihedral angle formed between the alkyl chain and the pyridinium ring is 52.73 (7)°, more acute than the 79.16° seen in 1-dodecylpyridinium chloride monohydrate (Vongbupnimit et al.,1995). Packing in this structure, Figure 2, is governed primarily by hydrogen bonding, including both classical O—H donors and non-classical C—H donors. The bromide ion accepts a weak hydrogen bond [O1···Br1 = 3.336 (2) Å and <(O1—H1x···Br1) = 178 (3)°] from the water molecule (Desiraju & Steiner, 1999) and symmetry links it to another water molecule [O1···Br1i = 3.330 (2) Å and <(O1—H1x···Br1i) = 174 (3)° (i = x + 1, y, z)]. There are also five non-classical hydrogen bonds between C—H donors and either the bromide anion or the water molecule. Four of these interactions involve pyridinium C—H groups whilst one involves the methylene group attached directly to the pyridinium nitrogen, (Table 1). Hydrophobic interactions between the alkyl chains give rise to interdigitated molecules that resemble the structure of a lipid bilayer. This may indicate that, in solution, structures at higher concentrations of the surfactant may resemble lipid bilayers and stacked lipid bilayers as suggested by Isrealachvili (1985).

Related literature top

For a related structure see: Vongbupnimit et al. (1995). For details of critical micelle concentrations in quaternary nitrogen species, see: González-Pérez et. al. (2006). Fo lipid bilayers, see: Israelachvili (1985). For a discussion of hydrogen bonding, see: Desiraju & Steiner (1999).

Experimental top

1-Tetradecylpyridiniumbromide was synthesized by heating 1-bromotetradecane in pyridine at reflux for three hours. Excess pyridine was removed under reduced pressure and the resulting solid dissolved in a minimum of CHCl3. Pouring this slowly into stirring ethyl acetate resulted in the formation of a white solid which was subsequently filtered and recrystallized from methanol. The solid was dissolved in water and left to slowly evaporate, affording colourless plates of (I).

Refinement top

All H-atoms, except for water H atoms, were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic, 0.99 Å, Uiso = 1.2Ueq (C) for CH2 and 0.99 Å, Uiso = 1.2Ueq (C) for CH3 atoms. The water H-atoms were found from a difference map and refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2 (Bruker, 2006) and SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 50% probability elipsoids for the non-hydrogen atoms.
[Figure 2] Fig. 2. Packing of (I) viewed in the b direction. Hydrogen atoms not involved in hydrogen bonding have been removed for clarity.
1-Tetradecylpyridinium bromide monohydrate top
Crystal data top
C19H34N+·Br·H2OZ = 2
Mr = 374.40F(000) = 400
Triclinic, P1Dx = 1.238 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5061 (13) ÅCell parameters from 6262 reflections
b = 7.4731 (18) Åθ = 2.5–26.1°
c = 25.039 (7) ŵ = 2.05 mm1
α = 83.464 (15)°T = 92 K
β = 85.196 (14)°Plate, colourless
γ = 79.439 (14)°0.21 × 0.11 × 0.02 mm
V = 1004.2 (4) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4039 independent reflections
Radiation source: fine-focus sealed tube3598 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ϕ and ω scansθmax = 26.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
h = 66
Tmin = 0.767, Tmax = 0.960k = 99
16693 measured reflectionsl = 3131
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0278P)2 + 0.264P]
where P = (Fo2 + 2Fc2)/3
4039 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C19H34N+·Br·H2Oγ = 79.439 (14)°
Mr = 374.40V = 1004.2 (4) Å3
Triclinic, P1Z = 2
a = 5.5061 (13) ÅMo Kα radiation
b = 7.4731 (18) ŵ = 2.05 mm1
c = 25.039 (7) ÅT = 92 K
α = 83.464 (15)°0.21 × 0.11 × 0.02 mm
β = 85.196 (14)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4039 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2006)
3598 reflections with I > 2σ(I)
Tmin = 0.767, Tmax = 0.960Rint = 0.052
16693 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.35 e Å3
4039 reflectionsΔρmin = 0.40 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.5509 (3)0.1133 (2)0.38384 (7)0.0156 (4)
C11.7539 (4)0.2366 (3)0.39655 (10)0.0194 (5)
H11.88480.26310.36990.023*
C21.7739 (4)0.3246 (3)0.44777 (10)0.0226 (5)
H21.91850.41040.45650.027*
C31.5829 (4)0.2874 (3)0.48646 (10)0.0228 (5)
H31.59470.34610.52210.027*
C41.3725 (4)0.1622 (3)0.47226 (10)0.0220 (5)
H41.23760.13620.49810.026*
C51.3608 (4)0.0763 (3)0.42071 (9)0.0196 (5)
H51.21770.00960.41110.024*
C61.5377 (4)0.0140 (3)0.32897 (9)0.0192 (5)
H6A1.69220.05660.30740.023*
H6B1.52810.11820.33190.023*
C71.3178 (4)0.0397 (3)0.29934 (9)0.0198 (5)
H7A1.16160.01010.31930.024*
H7B1.32140.17180.29740.024*
C81.3274 (4)0.0584 (3)0.24257 (9)0.0204 (5)
H8A1.32550.18990.24520.025*
H8B1.48600.00910.22350.025*
C91.1161 (4)0.0407 (3)0.20918 (9)0.0217 (5)
H9A1.11660.09070.20670.026*
H9B0.95720.09170.22790.026*
C101.1310 (4)0.1377 (3)0.15259 (9)0.0206 (5)
H10A1.29150.08800.13430.025*
H10B1.12850.26920.15520.025*
C110.9233 (4)0.1197 (3)0.11784 (9)0.0219 (5)
H11A0.92640.01160.11480.026*
H11B0.76250.16880.13620.026*
C120.9401 (4)0.2189 (3)0.06138 (9)0.0210 (5)
H12A1.10140.17030.04320.025*
H12B0.93630.35030.06440.025*
C130.7339 (4)0.2011 (3)0.02618 (9)0.0214 (5)
H13A0.73840.06980.02280.026*
H13B0.57250.24900.04440.026*
C140.7506 (4)0.3014 (3)0.02994 (9)0.0215 (5)
H14A0.91220.25350.04820.026*
H14B0.74630.43260.02660.026*
C150.5455 (4)0.2843 (3)0.06533 (9)0.0207 (5)
H15A0.54970.15310.06870.025*
H15B0.38390.33230.04710.025*
C160.5619 (4)0.3841 (3)0.12136 (9)0.0211 (5)
H16A0.72320.33580.13960.025*
H16B0.55840.51530.11800.025*
C170.3558 (4)0.3677 (3)0.15676 (9)0.0198 (5)
H17A0.36050.23660.16040.024*
H17B0.19440.41470.13830.024*
C180.3709 (4)0.4697 (3)0.21286 (9)0.0236 (5)
H18A0.53150.42190.23150.028*
H18B0.36720.60070.20930.028*
C190.1630 (5)0.4532 (3)0.24755 (10)0.0257 (5)
H19A0.16610.32390.25170.031*
H19B0.18580.52010.28310.031*
H19C0.00330.50480.23020.031*
O10.8690 (4)0.2223 (3)0.40217 (8)0.0278 (4)
H1X0.738 (6)0.283 (4)0.3942 (12)0.042 (9)*
H1Y0.966 (7)0.285 (5)0.3937 (14)0.054 (12)*
Br10.32197 (4)0.46172 (3)0.367608 (9)0.02012 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0170 (9)0.0141 (9)0.0155 (10)0.0011 (8)0.0041 (8)0.0013 (7)
C10.0159 (11)0.0191 (12)0.0223 (13)0.0003 (9)0.0026 (9)0.0025 (9)
C20.0218 (12)0.0221 (12)0.0228 (13)0.0012 (10)0.0089 (10)0.0009 (10)
C30.0312 (13)0.0190 (12)0.0191 (13)0.0060 (10)0.0075 (10)0.0015 (10)
C40.0235 (12)0.0225 (12)0.0198 (13)0.0026 (10)0.0003 (10)0.0044 (10)
C50.0179 (11)0.0191 (11)0.0218 (13)0.0001 (9)0.0038 (9)0.0055 (9)
C60.0223 (12)0.0183 (11)0.0167 (12)0.0035 (10)0.0037 (9)0.0008 (9)
C70.0190 (11)0.0206 (12)0.0199 (13)0.0039 (10)0.0049 (9)0.0009 (9)
C80.0195 (12)0.0225 (12)0.0195 (13)0.0052 (10)0.0034 (9)0.0010 (10)
C90.0219 (12)0.0237 (12)0.0202 (13)0.0079 (10)0.0047 (10)0.0033 (10)
C100.0194 (12)0.0222 (12)0.0203 (13)0.0051 (10)0.0031 (10)0.0013 (10)
C110.0221 (12)0.0230 (12)0.0211 (13)0.0066 (10)0.0052 (10)0.0023 (10)
C120.0200 (12)0.0239 (12)0.0190 (13)0.0058 (10)0.0027 (10)0.0026 (10)
C130.0211 (12)0.0241 (12)0.0200 (13)0.0071 (10)0.0060 (10)0.0023 (10)
C140.0205 (12)0.0256 (13)0.0189 (13)0.0066 (10)0.0038 (10)0.0023 (10)
C150.0221 (12)0.0217 (12)0.0193 (13)0.0075 (10)0.0040 (10)0.0021 (10)
C160.0199 (12)0.0238 (12)0.0197 (13)0.0056 (10)0.0031 (10)0.0016 (10)
C170.0203 (12)0.0209 (12)0.0181 (12)0.0046 (10)0.0024 (9)0.0009 (9)
C180.0238 (12)0.0310 (13)0.0160 (12)0.0060 (11)0.0027 (10)0.0009 (10)
C190.0279 (13)0.0310 (14)0.0187 (13)0.0081 (11)0.0040 (10)0.0026 (10)
O10.0181 (9)0.0226 (10)0.0397 (12)0.0006 (9)0.0037 (8)0.0046 (8)
Br10.01596 (12)0.02031 (13)0.02261 (14)0.00038 (9)0.00376 (9)0.00022 (9)
Geometric parameters (Å, º) top
N1—C11.347 (3)C11—H11A0.9900
N1—C51.347 (3)C11—H11B0.9900
N1—C61.486 (3)C12—C131.527 (3)
C1—C21.376 (3)C12—H12A0.9900
C1—H10.9500C12—H12B0.9900
C2—C31.380 (3)C13—C141.519 (3)
C2—H20.9500C13—H13A0.9900
C3—C41.393 (3)C13—H13B0.9900
C3—H30.9500C14—C151.524 (3)
C4—C51.376 (3)C14—H14A0.9900
C4—H40.9500C14—H14B0.9900
C5—H50.9500C15—C161.516 (3)
C6—C71.524 (3)C15—H15A0.9900
C6—H6A0.9900C15—H15B0.9900
C6—H6B0.9900C16—C171.528 (3)
C7—C81.525 (3)C16—H16A0.9900
C7—H7A0.9900C16—H16B0.9900
C7—H7B0.9900C17—C181.523 (3)
C8—C91.522 (3)C17—H17A0.9900
C8—H8A0.9900C17—H17B0.9900
C8—H8B0.9900C18—C191.524 (3)
C9—C101.519 (3)C18—H18A0.9900
C9—H9A0.9900C18—H18B0.9900
C9—H9B0.9900C19—H19A0.9800
C10—C111.527 (3)C19—H19B0.9800
C10—H10A0.9900C19—H19C0.9800
C10—H10B0.9900O1—H1X0.80 (3)
C11—C121.524 (3)O1—H1Y0.77 (4)
C1—N1—C5120.7 (2)C10—C11—H11B108.8
C1—N1—C6119.90 (19)H11A—C11—H11B107.7
C5—N1—C6119.42 (18)C11—C12—C13114.38 (18)
N1—C1—C2120.8 (2)C11—C12—H12A108.7
N1—C1—H1119.6C13—C12—H12A108.7
C2—C1—H1119.6C11—C12—H12B108.7
C1—C2—C3119.7 (2)C13—C12—H12B108.7
C1—C2—H2120.2H12A—C12—H12B107.6
C3—C2—H2120.2C14—C13—C12114.16 (19)
C2—C3—C4118.7 (2)C14—C13—H13A108.7
C2—C3—H3120.6C12—C13—H13A108.7
C4—C3—H3120.6C14—C13—H13B108.7
C5—C4—C3119.8 (2)C12—C13—H13B108.7
C5—C4—H4120.1H13A—C13—H13B107.6
C3—C4—H4120.1C13—C14—C15114.50 (19)
N1—C5—C4120.4 (2)C13—C14—H14A108.6
N1—C5—H5119.8C15—C14—H14A108.6
C4—C5—H5119.8C13—C14—H14B108.6
N1—C6—C7113.80 (18)C15—C14—H14B108.6
N1—C6—H6A108.8H14A—C14—H14B107.6
C7—C6—H6A108.8C16—C15—C14114.58 (18)
N1—C6—H6B108.8C16—C15—H15A108.6
C7—C6—H6B108.8C14—C15—H15A108.6
H6A—C6—H6B107.7C16—C15—H15B108.6
C6—C7—C8110.00 (18)C14—C15—H15B108.6
C6—C7—H7A109.7H15A—C15—H15B107.6
C8—C7—H7A109.7C15—C16—C17114.58 (19)
C6—C7—H7B109.7C15—C16—H16A108.6
C8—C7—H7B109.7C17—C16—H16A108.6
H7A—C7—H7B108.2C15—C16—H16B108.6
C9—C8—C7114.39 (19)C17—C16—H16B108.6
C9—C8—H8A108.7H16A—C16—H16B107.6
C7—C8—H8A108.7C18—C17—C16114.54 (19)
C9—C8—H8B108.7C18—C17—H17A108.6
C7—C8—H8B108.7C16—C17—H17A108.6
H8A—C8—H8B107.6C18—C17—H17B108.6
C10—C9—C8113.48 (19)C16—C17—H17B108.6
C10—C9—H9A108.9H17A—C17—H17B107.6
C8—C9—H9A108.9C17—C18—C19113.9 (2)
C10—C9—H9B108.9C17—C18—H18A108.8
C8—C9—H9B108.9C19—C18—H18A108.8
H9A—C9—H9B107.7C17—C18—H18B108.8
C9—C10—C11114.64 (19)C19—C18—H18B108.8
C9—C10—H10A108.6H18A—C18—H18B107.7
C11—C10—H10A108.6C18—C19—H19A109.5
C9—C10—H10B108.6C18—C19—H19B109.5
C11—C10—H10B108.6H19A—C19—H19B109.5
H10A—C10—H10B107.6C18—C19—H19C109.5
C12—C11—C10113.93 (19)H19A—C19—H19C109.5
C12—C11—H11A108.8H19B—C19—H19C109.5
C10—C11—H11A108.8H1X—O1—H1Y105 (3)
C12—C11—H11B108.8
C5—N1—C1—C21.4 (3)C6—C7—C8—C9179.69 (19)
C6—N1—C1—C2177.37 (19)C7—C8—C9—C10179.33 (19)
N1—C1—C2—C30.6 (3)C8—C9—C10—C11179.1 (2)
C1—C2—C3—C40.6 (3)C9—C10—C11—C12179.6 (2)
C2—C3—C4—C51.1 (3)C10—C11—C12—C13179.72 (19)
C1—N1—C5—C40.9 (3)C11—C12—C13—C14179.6 (2)
C6—N1—C5—C4177.9 (2)C12—C13—C14—C15180.0 (2)
C3—C4—C5—N10.4 (3)C13—C14—C15—C16179.9 (2)
C1—N1—C6—C7122.1 (2)C14—C15—C16—C17179.78 (19)
C5—N1—C6—C759.1 (3)C15—C16—C17—C18179.4 (2)
N1—C6—C7—C8177.00 (18)C16—C17—C18—C19179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1X···Br10.80 (3)2.53 (3)3.336 (2)178 (3)
O1—H1Y···Br1i0.77 (4)2.56 (4)3.330 (2)174 (3)
C1—H1···Br1ii0.952.873.577 (2)133
C3—H3···Br1iii0.952.853.783 (3)168
C4—H4···O1iii0.952.553.325 (3)138
C5—H5···O10.952.273.207 (3)171
C6—H6B···Br1i0.992.823.745 (2)155
Symmetry codes: (i) x+1, y, z; (ii) x+2, y1, z; (iii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H34N+·Br·H2O
Mr374.40
Crystal system, space groupTriclinic, P1
Temperature (K)92
a, b, c (Å)5.5061 (13), 7.4731 (18), 25.039 (7)
α, β, γ (°)83.464 (15), 85.196 (14), 79.439 (14)
V3)1004.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.05
Crystal size (mm)0.21 × 0.11 × 0.02
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2006)
Tmin, Tmax0.767, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
16693, 4039, 3598
Rint0.052
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.074, 1.09
No. of reflections4039
No. of parameters208
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.40

Computer programs: , APEX2 (Bruker, 2006) and SAINT (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1X···Br10.80 (3)2.53 (3)3.336 (2)178 (3)
O1—H1Y···Br1i0.77 (4)2.56 (4)3.330 (2)174 (3)
C1—H1···Br1ii0.952.873.577 (2)133
C3—H3···Br1iii0.952.853.783 (3)168
C4—H4···O1iii0.952.553.325 (3)138
C5—H5···O10.952.273.207 (3)171
C6—H6B···Br1i0.992.823.745 (2)155
Symmetry codes: (i) x+1, y, z; (ii) x+2, y1, z; (iii) x+2, y, z+1.
 

Acknowledgements

The authors thank the University of Otago for financial support. We thank the Tertiary Education Commission (New Zealand) for the award of a Bright Futures Top Achiever Doctoral scholarship to JAK.

References

First citationBruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. Oxford University Press.  Google Scholar
First citationGonzález-Pérez, A., Varela, L. M., Garcia, M. & Rodriguez, J. R. (2006). J. Colloid Interface Sci. 293, 213–221.  Web of Science PubMed Google Scholar
First citationIsraelachvili, J. N. (1985). Intermolecular and Surface Forces, 2nd ed. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVongbupnimit, K., Noguchi, K. & Okuyama, K. (1995). Acta Cryst. C51, 1940–1941.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationWestrip, S. P. (2008). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds