organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro­benzaldehyde 2,4-di­nitro­phenyl­hydrazone

aDepartment of Applied Chemistry, College of Sciences, Henan Agricultural University, Zhengzhou 450002, People's Republic of China
*Correspondence e-mail: bfyu2008@yahoo.com.cn

(Received 4 June 2008; accepted 2 July 2008; online 9 July 2008)

The asymmetric unit of the title compound, C13H8Cl2N4O4, contains two independent but similar and almost planar mol­ecules. An intra­molecular N—H⋯O hydrogen bond is observed in each mol­ecule.

Related literature

For background, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]); Ohba (1996[Ohba, S. (1996). Acta Cryst. C52, 2118-2119.]).

[Scheme 1]

Experimental

Crystal data
  • C13H8Cl2N4O4

  • Mr = 355.14

  • Monoclinic, P 21 /c

  • a = 13.3814 (7) Å

  • b = 28.9980 (13) Å

  • c = 7.3996 (3) Å

  • β = 92.422 (4)°

  • V = 2868.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 291 (2) K

  • 0.16 × 0.11 × 0.09 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.927, Tmax = 0.958

  • 21827 measured reflections

  • 5060 independent reflections

  • 2794 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.187

  • S = 1.02

  • 5060 reflections

  • 415 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯O3 0.86 2.05 2.645 (5) 126
N8—H8A⋯O8 0.86 2.03 2.627 (5) 126

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Several phenylhydrazone derivatives have been shown to be potentially DNA-damaging and are mutagenic agents (Okabe et al.,1993). As part of our work in this area, we have synthesized the title compound, (I), and we report its crystal structure here.

The two molecules in the asymmetric unit of (I) are almost planar, the dihedral angles between the the dichlorobenzene ring and the dinitrobenzene ring are 4.4 (2)° and 3.7 (2)°, in the C1 and C14 molecules, respectively. Otherwise, bond lengths and angles agree with those of other dinitrophenylhydrazone derivatives (Ohba, 1996). Intramolecular N—H···O hydrogen bonds (Fig. 1, Table 1) help to establish these molecular conformations.

Related literature top

For background, see: Okabe et al. (1993); Ohba (1996).

Experimental top

2,4-Dinitrophenylhydrazine (1 mmol, 0.198 g) was dissolved in anhydrous methanol, H2SO4 (98% 0.5 ml) was added to this, the mixture was stirred for several minitutes at 351 K, then 2,4-dichlorobenzyaldehyde (1 mmol, 0.175 g) in methanol (8 ml) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The product was isolated and recrystallized from DMF, yielding brown blocks of (I) after 6 d.

Refinement top

All H atoms were placed in calculated positions (C—H = 0.93 Å, N—H = 0.86Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 30% probability level (arbitrary spheres for the H atoms). The hydrogen bonds are indicated by dashed lines.
2,4-Dichlorobenzaldehyde 2,4-dinitrophenylhydrazone top
Crystal data top
C13H8Cl2N4O4F(000) = 1440
Mr = 355.14Dx = 1.645 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 721 reflections
a = 13.3814 (7) Åθ = 2.5–20.6°
b = 28.9980 (13) ŵ = 0.48 mm1
c = 7.3996 (3) ÅT = 291 K
β = 92.422 (4)°Block, brown
V = 2868.7 (2) Å30.16 × 0.11 × 0.09 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
5060 independent reflections
Radiation source: sealed tube2794 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 1515
Tmin = 0.927, Tmax = 0.958k = 3434
21827 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0939P)2]
where P = (Fo2 + 2Fc2)/3
5060 reflections(Δ/σ)max = 0.018
415 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C13H8Cl2N4O4V = 2868.7 (2) Å3
Mr = 355.14Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.3814 (7) ŵ = 0.48 mm1
b = 28.9980 (13) ÅT = 291 K
c = 7.3996 (3) Å0.16 × 0.11 × 0.09 mm
β = 92.422 (4)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5060 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2794 reflections with I > 2σ(I)
Tmin = 0.927, Tmax = 0.958Rint = 0.093
21827 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 1.02Δρmax = 0.70 e Å3
5060 reflectionsΔρmin = 0.36 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5169 (3)0.79565 (15)0.8938 (6)0.0525 (11)
C20.4504 (4)0.76034 (15)0.8543 (6)0.0568 (12)
H2A0.46810.72990.87980.068*
C30.3594 (4)0.77030 (16)0.7782 (6)0.0567 (12)
C40.3307 (4)0.81536 (17)0.7419 (7)0.0649 (13)
H4A0.26700.82170.69260.078*
C50.3956 (4)0.85013 (17)0.7786 (6)0.0630 (13)
H5A0.37550.88020.75320.076*
C60.4926 (4)0.84239 (14)0.8539 (6)0.0508 (11)
C70.5828 (4)0.95479 (14)0.8532 (6)0.0522 (11)
H7A0.64580.95030.90850.063*
C80.5499 (3)1.00103 (14)0.7955 (5)0.0483 (11)
C90.4563 (3)1.00735 (15)0.7104 (6)0.0526 (11)
H9A0.41510.98180.69130.063*
C100.4222 (3)1.05004 (15)0.6533 (6)0.0535 (11)
H10A0.35951.05340.59590.064*
C110.4836 (4)1.08737 (14)0.6836 (6)0.0495 (11)
C120.5769 (3)1.08302 (15)0.7673 (6)0.0519 (11)
H12A0.61811.10860.78480.062*
C130.6078 (3)1.03998 (14)0.8247 (6)0.0496 (11)
C140.0562 (3)0.40012 (14)0.2229 (5)0.0453 (10)
C150.0068 (3)0.43582 (15)0.1708 (6)0.0501 (11)
H15A0.01420.46620.18540.060*
C160.1000 (3)0.42650 (15)0.0978 (6)0.0509 (11)
C170.1325 (4)0.38143 (16)0.0780 (6)0.0572 (12)
H17A0.19720.37540.03300.069*
C180.0705 (4)0.34611 (16)0.1240 (6)0.0590 (12)
H18A0.09300.31600.10620.071*
C190.0269 (3)0.35334 (14)0.1980 (5)0.0479 (11)
C200.1045 (4)0.23951 (15)0.2590 (6)0.0535 (12)
H20A0.16810.24400.31170.064*
C210.0647 (3)0.19295 (14)0.2269 (5)0.0472 (11)
C220.1187 (3)0.15381 (15)0.2772 (5)0.0506 (11)
C230.0818 (4)0.10936 (14)0.2470 (6)0.0517 (11)
H23A0.11930.08360.28180.062*
C240.0113 (4)0.10474 (15)0.1644 (6)0.0513 (11)
C250.0668 (4)0.14258 (16)0.1099 (6)0.0588 (12)
H25A0.12960.13880.05280.071*
C260.0283 (4)0.18613 (15)0.1409 (6)0.0552 (12)
H26A0.06570.21160.10310.066*
N10.1514 (3)0.41294 (14)0.3070 (5)0.0577 (10)
N20.1667 (3)0.46460 (16)0.0431 (5)0.0612 (11)
N30.2910 (3)0.73221 (16)0.7304 (6)0.0708 (12)
N40.6139 (3)0.78294 (14)0.9750 (6)0.0659 (11)
N50.5238 (3)0.92107 (12)0.8261 (5)0.0546 (10)
N60.5553 (3)0.87810 (12)0.8820 (5)0.0541 (10)
H6A0.61340.87420.93360.065*
N70.0487 (3)0.27372 (12)0.2123 (5)0.0529 (10)
N80.0870 (3)0.31688 (11)0.2431 (5)0.0532 (9)
H8A0.14650.32080.28900.064*
O10.2127 (3)0.74172 (14)0.6467 (6)0.0950 (13)
O20.3142 (3)0.69353 (13)0.7743 (6)0.0985 (13)
O30.6762 (3)0.81245 (11)1.0089 (5)0.0726 (10)
O40.6286 (3)0.74302 (14)1.0074 (8)0.135 (2)
O50.1387 (3)0.50380 (12)0.0700 (5)0.0796 (11)
O60.2487 (3)0.45419 (12)0.0264 (5)0.0833 (11)
O70.1687 (3)0.45318 (12)0.3374 (6)0.0913 (13)
O80.2111 (3)0.38253 (11)0.3504 (5)0.0731 (10)
Cl10.44331 (10)1.14207 (4)0.61744 (18)0.0689 (4)
Cl20.05792 (11)0.04957 (4)0.12777 (17)0.0700 (4)
Cl30.23487 (9)0.15728 (4)0.38772 (18)0.0705 (4)
Cl40.72292 (10)1.03677 (4)0.94132 (19)0.0724 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.054 (3)0.047 (3)0.057 (3)0.004 (2)0.000 (2)0.002 (2)
C20.061 (3)0.041 (3)0.069 (3)0.001 (2)0.002 (3)0.002 (2)
C30.055 (3)0.052 (3)0.064 (3)0.006 (2)0.004 (2)0.004 (2)
C40.054 (3)0.060 (3)0.080 (3)0.007 (3)0.005 (3)0.012 (3)
C50.066 (3)0.049 (3)0.073 (3)0.002 (3)0.005 (3)0.008 (2)
C60.061 (3)0.038 (3)0.053 (3)0.000 (2)0.005 (2)0.0013 (19)
C70.058 (3)0.045 (3)0.053 (3)0.001 (2)0.004 (2)0.002 (2)
C80.050 (3)0.047 (3)0.048 (2)0.001 (2)0.003 (2)0.0021 (19)
C90.055 (3)0.048 (3)0.055 (3)0.011 (2)0.001 (2)0.000 (2)
C100.050 (3)0.055 (3)0.055 (3)0.001 (2)0.002 (2)0.008 (2)
C110.060 (3)0.039 (2)0.050 (3)0.004 (2)0.003 (2)0.0070 (19)
C120.054 (3)0.045 (3)0.057 (3)0.002 (2)0.003 (2)0.006 (2)
C130.048 (3)0.048 (3)0.052 (3)0.002 (2)0.005 (2)0.003 (2)
C140.051 (3)0.044 (2)0.041 (2)0.003 (2)0.003 (2)0.0004 (18)
C150.055 (3)0.044 (3)0.051 (3)0.007 (2)0.002 (2)0.003 (2)
C160.052 (3)0.048 (3)0.053 (3)0.000 (2)0.004 (2)0.003 (2)
C170.051 (3)0.058 (3)0.062 (3)0.008 (2)0.007 (2)0.001 (2)
C180.063 (3)0.048 (3)0.066 (3)0.010 (2)0.002 (3)0.002 (2)
C190.053 (3)0.046 (3)0.045 (2)0.006 (2)0.003 (2)0.0022 (19)
C200.062 (3)0.047 (3)0.052 (3)0.004 (2)0.002 (2)0.000 (2)
C210.056 (3)0.044 (3)0.042 (2)0.004 (2)0.003 (2)0.0053 (18)
C220.054 (3)0.055 (3)0.043 (2)0.001 (2)0.002 (2)0.0008 (19)
C230.059 (3)0.042 (3)0.054 (3)0.006 (2)0.002 (2)0.006 (2)
C240.058 (3)0.051 (3)0.044 (2)0.006 (2)0.001 (2)0.001 (2)
C250.058 (3)0.064 (3)0.053 (3)0.001 (3)0.008 (2)0.003 (2)
C260.066 (3)0.045 (3)0.054 (3)0.004 (2)0.003 (2)0.003 (2)
N10.058 (3)0.049 (3)0.065 (2)0.001 (2)0.007 (2)0.0022 (19)
N20.057 (3)0.063 (3)0.062 (2)0.008 (2)0.008 (2)0.007 (2)
N30.059 (3)0.064 (3)0.089 (3)0.011 (2)0.000 (3)0.002 (2)
N40.069 (3)0.039 (2)0.088 (3)0.008 (2)0.014 (2)0.006 (2)
N50.068 (3)0.035 (2)0.060 (2)0.0043 (19)0.0047 (19)0.0060 (17)
N60.064 (3)0.043 (2)0.056 (2)0.0031 (19)0.0001 (19)0.0027 (17)
N70.068 (3)0.038 (2)0.053 (2)0.0054 (19)0.0012 (19)0.0002 (16)
N80.058 (2)0.039 (2)0.063 (2)0.0008 (18)0.0017 (19)0.0015 (17)
O10.072 (3)0.090 (3)0.121 (3)0.011 (2)0.027 (3)0.002 (2)
O20.085 (3)0.053 (2)0.157 (4)0.008 (2)0.013 (3)0.006 (2)
O30.069 (2)0.052 (2)0.096 (3)0.0040 (18)0.019 (2)0.0004 (17)
O40.094 (3)0.048 (3)0.256 (6)0.001 (2)0.075 (4)0.023 (3)
O50.087 (3)0.046 (2)0.105 (3)0.0062 (19)0.012 (2)0.0089 (19)
O60.066 (3)0.084 (3)0.098 (3)0.005 (2)0.016 (2)0.007 (2)
O70.081 (3)0.047 (2)0.142 (4)0.0054 (19)0.036 (3)0.012 (2)
O80.070 (2)0.053 (2)0.095 (3)0.0059 (18)0.019 (2)0.0025 (18)
Cl10.0721 (9)0.0489 (7)0.0843 (9)0.0067 (6)0.0118 (7)0.0137 (6)
Cl20.0824 (10)0.0512 (7)0.0750 (8)0.0133 (6)0.0150 (7)0.0007 (6)
Cl30.0564 (8)0.0704 (9)0.0833 (9)0.0032 (6)0.0139 (7)0.0004 (6)
Cl40.0567 (8)0.0676 (8)0.0911 (9)0.0022 (6)0.0189 (7)0.0157 (7)
Geometric parameters (Å, º) top
C1—C21.379 (6)C16—N21.467 (6)
C1—C61.422 (6)C17—C181.352 (6)
C1—N41.455 (6)C17—H17A0.9300
C2—C31.352 (6)C18—C191.408 (6)
C2—H2A0.9300C18—H18A0.9300
C3—C41.385 (6)C19—N81.361 (5)
C3—N31.468 (6)C20—N71.280 (5)
C4—C51.351 (7)C20—C211.467 (6)
C4—H4A0.9300C20—H20A0.9300
C5—C61.409 (7)C21—C261.388 (6)
C5—H5A0.9300C21—C221.388 (6)
C6—N61.343 (5)C22—C231.395 (6)
C7—N51.267 (5)C22—Cl31.728 (5)
C7—C81.469 (6)C23—C241.371 (6)
C7—H7A0.9300C23—H23A0.9300
C8—C131.381 (6)C24—C251.376 (6)
C8—C91.390 (6)C24—Cl21.734 (4)
C9—C101.379 (6)C25—C261.380 (6)
C9—H9A0.9300C25—H25A0.9300
C10—C111.372 (6)C26—H26A0.9300
C10—H10A0.9300N1—O71.209 (4)
C11—C121.375 (6)N1—O81.224 (5)
C11—Cl11.739 (4)N2—O51.211 (5)
C12—C131.376 (6)N2—O61.229 (5)
C12—H12A0.9300N3—O21.204 (5)
C13—Cl41.736 (5)N3—O11.226 (5)
C14—C151.379 (6)N4—O41.197 (5)
C14—C191.422 (6)N4—O31.213 (5)
C14—N11.443 (6)N5—N61.373 (5)
C15—C161.365 (6)N6—H6A0.8600
C15—H15A0.9300N7—N81.368 (5)
C16—C171.384 (6)N8—H8A0.8600
C2—C1—C6121.6 (4)C18—C17—H17A119.9
C2—C1—N4117.1 (4)C16—C17—H17A119.9
C6—C1—N4121.3 (4)C17—C18—C19122.2 (4)
C3—C2—C1119.4 (4)C17—C18—H18A118.9
C3—C2—H2A120.3C19—C18—H18A118.9
C1—C2—H2A120.3N8—C19—C18120.5 (4)
C2—C3—C4121.3 (4)N8—C19—C14123.5 (4)
C2—C3—N3118.7 (4)C18—C19—C14116.0 (4)
C4—C3—N3119.9 (5)N7—C20—C21117.8 (4)
C5—C4—C3119.6 (5)N7—C20—H20A121.1
C5—C4—H4A120.2C21—C20—H20A121.1
C3—C4—H4A120.2C26—C21—C22116.9 (4)
C4—C5—C6122.3 (4)C26—C21—C20121.2 (4)
C4—C5—H5A118.8C22—C21—C20121.9 (4)
C6—C5—H5A118.8C21—C22—C23122.4 (4)
N6—C6—C5119.8 (4)C21—C22—Cl3121.8 (3)
N6—C6—C1124.6 (4)C23—C22—Cl3115.8 (3)
C5—C6—C1115.6 (4)C24—C23—C22118.1 (4)
N5—C7—C8118.7 (4)C24—C23—H23A120.9
N5—C7—H7A120.6C22—C23—H23A120.9
C8—C7—H7A120.6C23—C24—C25121.5 (4)
C13—C8—C9116.8 (4)C23—C24—Cl2118.3 (3)
C13—C8—C7122.8 (4)C25—C24—Cl2120.2 (4)
C9—C8—C7120.4 (4)C24—C25—C26119.2 (4)
C10—C9—C8122.5 (4)C24—C25—H25A120.4
C10—C9—H9A118.8C26—C25—H25A120.4
C8—C9—H9A118.8C25—C26—C21121.9 (4)
C9—C10—C11118.0 (4)C25—C26—H26A119.0
C9—C10—H10A121.0C21—C26—H26A119.0
C11—C10—H10A121.0O7—N1—O8121.9 (4)
C12—C11—C10121.8 (4)O7—N1—C14119.2 (4)
C12—C11—Cl1118.4 (3)O8—N1—C14118.8 (4)
C10—C11—Cl1119.8 (4)O5—N2—O6124.3 (4)
C11—C12—C13118.5 (4)O5—N2—C16118.7 (4)
C11—C12—H12A120.8O6—N2—C16116.9 (4)
C13—C12—H12A120.8O2—N3—O1123.4 (5)
C12—C13—C8122.3 (4)O2—N3—C3119.0 (5)
C12—C13—Cl4116.8 (3)O1—N3—C3117.6 (4)
C8—C13—Cl4120.9 (3)O4—N4—O3122.3 (4)
C15—C14—C19121.2 (4)O4—N4—C1117.7 (4)
C15—C14—N1116.4 (4)O3—N4—C1120.0 (4)
C19—C14—N1122.4 (4)C7—N5—N6118.1 (4)
C16—C15—C14119.9 (4)C6—N6—N5118.1 (4)
C16—C15—H15A120.0C6—N6—H6A120.9
C14—C15—H15A120.0N5—N6—H6A120.9
C15—C16—C17120.5 (4)C20—N7—N8117.0 (4)
C15—C16—N2119.7 (4)C19—N8—N7117.2 (4)
C17—C16—N2119.8 (4)C19—N8—H8A121.4
C18—C17—C16120.1 (4)N7—N8—H8A121.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···O30.862.052.645 (5)126
N8—H8A···O80.862.032.627 (5)126

Experimental details

Crystal data
Chemical formulaC13H8Cl2N4O4
Mr355.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)291
a, b, c (Å)13.3814 (7), 28.9980 (13), 7.3996 (3)
β (°) 92.422 (4)
V3)2868.7 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.16 × 0.11 × 0.09
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.927, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
21827, 5060, 2794
Rint0.093
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.187, 1.02
No. of reflections5060
No. of parameters415
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.36

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···O30.862.052.645 (5)126
N8—H8A···O80.862.032.627 (5)126
 

References

First citationBruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationOhba, S. (1996). Acta Cryst. C52, 2118–2119.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds