organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′,5,5′-Tetra­methyl-2,2′-di­phenyl-4,4′-[p-phenyl­enebis(methyl­­idyne­nitrilo)]di-1H-pyrazol-3(2H)-one

aKey Laboratory of Marine Chemistry, Theory and Technology, Ministry of Education, College of Chemistry, Ocean University of China, Qingdao Shandong 266100, People's Republic of China
*Correspondence e-mail: caifeng_bi@yahoo.com.cn

(Received 4 June 2008; accepted 7 July 2008; online 12 July 2008)

In the centrosymmetric title compound, C30H28N6O2, the dihedral angles between the anti­pyrine ring and the terminal phenyl and central benzene rings are 50.55 (10) and 14.62 (9)°, respectively. Some short inter­molecular C—H⋯O inter­actions may help to establish the packing. An intramolecular C—H⋯O hydrogen bond is also present.

Related literature

For related structures, see: Guo et al. (2007[Guo, F., Bi, C. F., Fan, Y. H. & Xiao, Y. (2007). Asian J. Chem. 3, 1846-1852.]); Selvakumar et al. (2007[Selvakumar, P. M., Suresh, E. & Subramanian, P. S. (2007). Polyhedron, 26, 749-756.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C30H28N6O2

  • Mr = 504.58

  • Monoclinic, P 21 /c

  • a = 6.0710 (2) Å

  • b = 22.2948 (7) Å

  • c = 9.8712 (3) Å

  • β = 95.147 (2)°

  • V = 1330.70 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 292 (2) K

  • 0.18 × 0.10 × 0.09 mm

Data collection
  • Bruker APEX2 CCD diffractometer

  • Absorption correction: none

  • 9162 measured reflections

  • 3034 independent reflections

  • 1545 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.141

  • S = 1.03

  • 3034 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11C⋯O1i 0.96 2.36 3.321 (2) 179
C11—H11A⋯O1ii 0.96 2.47 3.375 (3) 157
C12—H12⋯O1 0.93 2.30 3.002 (2) 132
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x-1, y, z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Recently, some new Schiff bases of 4-aminoantipyrine have been reported (Guo et al., 2007; Selvakumar et al., 2007). We herein report the crystal structure of the related title compound, (I).

The complete molecule of (I) is generated by inversion and its bond lengths and angles are within normal ranges (Allen et al., 1987). The maximum deviation from the mean plane for the antipyrine ring (N1/N2/C7—C9) is 0.039 (2)Å for N2. The dihedral angles between the mean planes of the antipyrine ring and the terminal and central benzene rings are 50.55 (10)° and 14.62 (9)°, respectively.

In the crystal, weak intermolecular C—H···O hydrogen bonds (Table 1) lead to chains of molecules (Fig. 2).

Related literature top

For related structures, see: Guo et al. (2007); Selvakumar et al. (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was synthesized according to the literature method (Selvakumar et al., 2007). Orange plates of (I) were obtained by slow evaporation of a dichloromethane solution at 292 K.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level for the non-hydrogen atoms. Atoms with the suffix a are generated by the symmetry operation (2-x, 1-y, 1-z).
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
1,1',5,5'-Tetramethyl-2,2'-diphenyl-4,4'-[p- phenylenebis(methylidynenitrilo)]di-1H-pyrazol-3(2H)-one top
Crystal data top
C30H28N6O2F(000) = 532
Mr = 504.58Dx = 1.259 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1828 reflections
a = 6.0710 (2) Åθ = 2.3–22.5°
b = 22.2948 (7) ŵ = 0.08 mm1
c = 9.8712 (3) ÅT = 292 K
β = 95.147 (2)°Plate, orange
V = 1330.70 (7) Å30.18 × 0.10 × 0.09 mm
Z = 2
Data collection top
Bruker APEX2 CCD
diffractometer
1545 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 27.5°, θmin = 1.8°
ω scansh = 77
9162 measured reflectionsk = 2817
3034 independent reflectionsl = 129
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0656P)2 + 0.0153P]
where P = (Fo2 + 2Fc2)/3
3034 reflections(Δ/σ)max = 0.001
174 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C30H28N6O2V = 1330.70 (7) Å3
Mr = 504.58Z = 2
Monoclinic, P21/cMo Kα radiation
a = 6.0710 (2) ŵ = 0.08 mm1
b = 22.2948 (7) ÅT = 292 K
c = 9.8712 (3) Å0.18 × 0.10 × 0.09 mm
β = 95.147 (2)°
Data collection top
Bruker APEX2 CCD
diffractometer
1545 reflections with I > 2σ(I)
9162 measured reflectionsRint = 0.027
3034 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.03Δρmax = 0.12 e Å3
3034 reflectionsΔρmin = 0.18 e Å3
174 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5949 (3)0.12139 (11)0.32324 (19)0.0767 (6)
H10.54830.14110.24270.092*
C20.6689 (3)0.06296 (12)0.3206 (2)0.0898 (7)
H20.66960.04280.23820.108*
C30.7414 (4)0.03451 (11)0.4398 (3)0.0976 (7)
H30.79020.00500.43790.117*
C40.7420 (4)0.06412 (12)0.5614 (2)0.0936 (7)
H40.79590.04500.64120.112*
C50.6643 (3)0.12151 (11)0.56657 (19)0.0777 (6)
H50.66080.14100.64970.093*
C60.5907 (3)0.15033 (9)0.44679 (17)0.0638 (5)
C70.6507 (3)0.25841 (8)0.49729 (18)0.0680 (5)
C80.5528 (3)0.31031 (9)0.42952 (16)0.0657 (5)
C90.3701 (3)0.29191 (11)0.34882 (16)0.0677 (5)
C100.2076 (3)0.32926 (10)0.26424 (18)0.0837 (6)
H10A0.19990.31580.17150.126*
H10B0.25360.37050.26890.126*
H10C0.06460.32560.29780.126*
C110.1418 (3)0.19847 (10)0.3420 (2)0.0868 (6)
H11A0.06850.20430.42320.130*
H11B0.16950.15650.33000.130*
H11C0.04970.21330.26500.130*
C120.8174 (3)0.38194 (9)0.49480 (17)0.0709 (5)
H120.89870.35170.54070.085*
C130.9078 (3)0.44231 (9)0.49655 (17)0.0647 (5)
C140.7891 (3)0.49092 (10)0.44065 (18)0.0758 (6)
H140.64640.48520.40000.091*
C150.8790 (3)0.54686 (9)0.44463 (19)0.0782 (6)
H150.79570.57870.40700.094*
N10.5147 (2)0.21053 (8)0.45312 (14)0.0699 (5)
N20.3520 (2)0.23112 (8)0.35370 (14)0.0709 (5)
N30.6298 (2)0.36905 (8)0.43221 (14)0.0692 (4)
O10.8196 (2)0.25210 (6)0.57570 (14)0.0871 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0660 (11)0.1017 (18)0.0610 (13)0.0126 (11)0.0015 (9)0.0058 (11)
C20.0811 (14)0.1034 (19)0.0843 (16)0.0086 (13)0.0044 (12)0.0195 (14)
C30.0867 (15)0.0909 (17)0.113 (2)0.0014 (12)0.0011 (14)0.0023 (16)
C40.0888 (15)0.107 (2)0.0824 (17)0.0020 (13)0.0072 (12)0.0115 (14)
C50.0653 (11)0.1053 (18)0.0605 (13)0.0029 (11)0.0064 (9)0.0020 (11)
C60.0466 (9)0.0866 (15)0.0563 (11)0.0086 (9)0.0051 (8)0.0048 (10)
C70.0526 (9)0.0930 (15)0.0554 (11)0.0021 (9)0.0110 (8)0.0130 (10)
C80.0527 (9)0.0910 (15)0.0509 (10)0.0064 (10)0.0094 (8)0.0077 (9)
C90.0487 (9)0.1015 (17)0.0505 (10)0.0041 (10)0.0086 (8)0.0064 (10)
C100.0628 (11)0.1145 (17)0.0696 (13)0.0125 (10)0.0170 (9)0.0040 (11)
C110.0511 (10)0.1288 (18)0.0764 (13)0.0119 (10)0.0170 (9)0.0014 (12)
C120.0620 (11)0.0919 (15)0.0562 (11)0.0073 (10)0.0099 (9)0.0055 (10)
C130.0590 (10)0.0832 (14)0.0497 (10)0.0020 (9)0.0070 (8)0.0066 (9)
C140.0555 (10)0.0959 (17)0.0716 (12)0.0021 (10)0.0187 (9)0.0014 (11)
C150.0643 (11)0.0872 (16)0.0781 (13)0.0062 (11)0.0210 (10)0.0021 (11)
N10.0542 (8)0.0945 (13)0.0571 (9)0.0002 (8)0.0174 (7)0.0081 (8)
N20.0477 (8)0.1039 (14)0.0570 (9)0.0000 (8)0.0175 (7)0.0055 (8)
N30.0579 (9)0.0914 (13)0.0557 (9)0.0025 (8)0.0085 (7)0.0079 (8)
O10.0706 (8)0.0991 (11)0.0832 (9)0.0021 (7)0.0401 (7)0.0085 (7)
Geometric parameters (Å, º) top
C1—C21.379 (3)C9—C101.488 (2)
C1—C61.382 (2)C10—H10A0.9600
C1—H10.9300C10—H10B0.9600
C2—C31.373 (3)C10—H10C0.9600
C2—H20.9300C11—N21.464 (2)
C3—C41.370 (3)C11—H11A0.9600
C3—H30.9300C11—H11B0.9600
C4—C51.366 (3)C11—H11C0.9600
C4—H40.9300C12—N31.279 (2)
C5—C61.384 (2)C12—C131.453 (3)
C5—H50.9300C12—H120.9300
C6—N11.422 (2)C13—C141.388 (2)
C7—O11.2360 (19)C13—C15i1.391 (2)
C7—N11.395 (2)C14—C151.361 (2)
C7—C81.438 (2)C14—H140.9300
C8—C91.369 (2)C15—C13i1.391 (2)
C8—N31.390 (2)C15—H150.9300
C9—N21.361 (2)N1—N21.4056 (17)
C2—C1—C6119.3 (2)H10A—C10—H10B109.5
C2—C1—H1120.4C9—C10—H10C109.5
C6—C1—H1120.4H10A—C10—H10C109.5
C3—C2—C1120.0 (2)H10B—C10—H10C109.5
C3—C2—H2120.0N2—C11—H11A109.5
C1—C2—H2120.0N2—C11—H11B109.5
C4—C3—C2120.2 (2)H11A—C11—H11B109.5
C4—C3—H3119.9N2—C11—H11C109.5
C2—C3—H3119.9H11A—C11—H11C109.5
C5—C4—C3120.7 (2)H11B—C11—H11C109.5
C5—C4—H4119.7N3—C12—C13122.21 (17)
C3—C4—H4119.7N3—C12—H12118.9
C4—C5—C6119.3 (2)C13—C12—H12118.9
C4—C5—H5120.4C14—C13—C15i117.43 (17)
C6—C5—H5120.4C14—C13—C12122.44 (16)
C1—C6—C5120.5 (2)C15i—C13—C12120.13 (17)
C1—C6—N1120.73 (17)C15—C14—C13120.76 (16)
C5—C6—N1118.80 (17)C15—C14—H14119.6
O1—C7—N1122.90 (17)C13—C14—H14119.6
O1—C7—C8131.90 (17)C14—C15—C13i121.81 (17)
N1—C7—C8105.18 (15)C14—C15—H15119.1
C9—C8—N3123.15 (18)C13i—C15—H15119.1
C9—C8—C7108.00 (18)C7—N1—N2109.12 (15)
N3—C8—C7128.68 (15)C7—N1—C6123.38 (14)
N2—C9—C8109.98 (16)N2—N1—C6119.21 (14)
N2—C9—C10121.68 (16)C9—N2—N1107.21 (13)
C8—C9—C10128.3 (2)C9—N2—C11124.40 (15)
C9—C10—H10A109.5N1—N2—C11116.47 (16)
C9—C10—H10B109.5C12—N3—C8120.28 (16)
C6—C1—C2—C31.3 (3)C13—C14—C15—C13i0.4 (3)
C1—C2—C3—C40.5 (3)O1—C7—N1—N2173.36 (16)
C2—C3—C4—C52.1 (3)C8—C7—N1—N24.94 (18)
C3—C4—C5—C62.0 (3)O1—C7—N1—C625.5 (3)
C2—C1—C6—C51.4 (3)C8—C7—N1—C6152.81 (15)
C2—C1—C6—N1179.78 (16)C1—C6—N1—C7114.23 (18)
C4—C5—C6—C10.3 (3)C5—C6—N1—C764.6 (2)
C4—C5—C6—N1178.63 (17)C1—C6—N1—N230.6 (2)
O1—C7—C8—C9177.28 (19)C5—C6—N1—N2150.49 (15)
N1—C7—C8—C90.80 (19)C8—C9—N2—N16.81 (18)
O1—C7—C8—N32.0 (3)C10—C9—N2—N1173.58 (15)
N1—C7—C8—N3176.11 (16)C8—C9—N2—C11147.84 (16)
N3—C8—C9—N2171.85 (15)C10—C9—N2—C1132.6 (2)
C7—C8—C9—N23.78 (19)C7—N1—N2—C97.32 (18)
N3—C8—C9—C107.7 (3)C6—N1—N2—C9156.74 (15)
C7—C8—C9—C10176.65 (17)C7—N1—N2—C11151.89 (16)
N3—C12—C13—C145.7 (3)C6—N1—N2—C1158.7 (2)
N3—C12—C13—C15i174.14 (16)C13—C12—N3—C8177.92 (15)
C15i—C13—C14—C150.4 (3)C9—C8—N3—C12170.27 (17)
C12—C13—C14—C15179.78 (18)C7—C8—N3—C124.4 (3)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11C···O1ii0.962.363.321 (2)179
C11—H11A···O1iii0.962.473.375 (3)157
C12—H12···O10.932.303.002 (2)132
Symmetry codes: (ii) x1, y+1/2, z1/2; (iii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC30H28N6O2
Mr504.58
Crystal system, space groupMonoclinic, P21/c
Temperature (K)292
a, b, c (Å)6.0710 (2), 22.2948 (7), 9.8712 (3)
β (°) 95.147 (2)
V3)1330.70 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.18 × 0.10 × 0.09
Data collection
DiffractometerBruker APEX2 CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9162, 3034, 1545
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.141, 1.03
No. of reflections3034
No. of parameters174
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.18

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11C···O1i0.962.363.321 (2)179
C11—H11A···O1ii0.962.473.375 (3)157
C12—H12···O10.932.303.002 (2)132
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x1, y, z.
 

Acknowledgements

We thank Jian Dong Fan for collecting the data and Wei Huang for giving us a lot of help.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGuo, F., Bi, C. F., Fan, Y. H. & Xiao, Y. (2007). Asian J. Chem. 3, 1846–1852.  Google Scholar
First citationSelvakumar, P. M., Suresh, E. & Subramanian, P. S. (2007). Polyhedron, 26, 749–756.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds