metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Hexa-μ2-acetato-tri­aqua-μ3-oxido-triiron(III) nitrate acetic acid solvate

aMedical College of Henan University, Henan University, Kaifeng 475004, People's Republic of China, and bBasic Experiment Teaching Center, Henan University, Kaifeng 475004, People's Republic of China
*Correspondence e-mail: hdhqx@henu.edu.cn

(Received 28 May 2008; accepted 29 June 2008; online 5 July 2008)

The asymmetric unit of the title compound, [Fe3(CH3COO)6O(H2O)3]NO3·CH3COOH, consists of a hexa-μ2-acetato-triaqua-μ3-oxo-triiron(III) macrocation, a nitrate ion and an acetic acid solvent mol­ecule. In the cation, each Fe3+ ion is coordinated by four carboxyl­ate O atoms, one central bridged O atom and one water mol­ecule, resulting in distorted FeO6 octa­hedra. A network of O—H⋯O hydrogen bonds helps to establish the packing.

Related literature

For related literature, see: Fujihara et al. (1998[Fujihara, T., Aonahata, J., Kumakura, S., Nagasawa, A., Murakami, K. & Ito, T. (1998). Inorg. Chem. 37, 3779-3784.]); Ren et al. (2004[Ren, X. M., Okudera, H. & Kremer, R. K. (2004). Acta Cryst. E60, m14-m16.]); Thirumurugan & Natarajan (2004[Thirumurugan, A. & Natarajan, S. (2004). Dalton Trans. pp. 2923-2928.]); Vrubel et al. (2006[Vrubel, H., Hasegawa, T., Oliverira, E. & Nunes, F. S. (2006). Inorg. Chem. Commun. 9, 208-211.]); Zhang et al. (2005[Zhang, H. T., Li, Y. Z., Wang, H. Q., Nfor, E. N. & You, X. Z. (2005). CrystEngComm, 7, 578-585.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe3(C2H3O2)6O(H2O)3]NO3·C2H4O2

  • Mr = 713.92

  • Monoclinic, P 21 /c

  • a = 11.835 (3) Å

  • b = 14.755 (4) Å

  • c = 15.250 (4) Å

  • β = 90.851 (5)°

  • V = 2662.8 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 296 (2) K

  • 0.18 × 0.13 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.750, Tmax = 0.848

  • 14072 measured reflections

  • 4953 independent reflections

  • 3355 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.106

  • S = 1.00

  • 4953 reflections

  • 378 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Selected bond lengths (Å)

Fe1—O13 1.897 (2)
Fe1—O1 1.987 (2)
Fe1—O10 1.995 (2)
Fe1—O12 2.005 (3)
Fe1—O3 2.063 (2)
Fe1—O1W 2.104 (2)
Fe2—O13 1.900 (2)
Fe2—O5 1.985 (2)
Fe2—O7 2.021 (2)
Fe2—O2 2.030 (2)
Fe2—O4 2.030 (2)
Fe2—O2W 2.126 (3)
Fe3—O13 1.916 (2)
Fe3—O11 2.011 (3)
Fe3—O6 2.013 (2)
Fe3—O8 2.013 (2)
Fe3—O9 2.017 (2)
Fe3—O3W 2.048 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O14—H14⋯O17i 0.82 1.82 2.642 (4) 178
O3W—H3AW⋯O15ii 0.816 (9) 1.894 (9) 2.697 (4) 168 (2)
O1W—H1AW⋯O18iii 0.815 (9) 2.008 (10) 2.821 (4) 176 (2)
O3W—H3BW⋯O17iv 0.818 (9) 1.938 (13) 2.742 (4) 167 (3)
O2W—H2AW⋯O15v 0.816 (9) 2.28 (2) 2.904 (4) 134 (2)
O1W—H1BW⋯O3vi 0.814 (9) 2.188 (12) 2.948 (3) 155 (2)
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x-1, y, z; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) x, y+1, z; (v) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) -x+1, -y+2, -z+1.

Data collection: SMART (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement and data reduction: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); structure solution: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); structure refinement: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Transiton-metal coordination complexes based on carboxylates have been attracting chemist's interests and constitutes one of the widest families of research (Thirumurugan & Natarajan, 2004). During the past years, lots of novel carboxylates compounds have been reported (Zhang et al., 2005), in which carboxlate-supported Cr3(/m3-O) (Fujihara et al., 1998) and Fe3(/m3-O) core (Ren et al., 2004; Vrubel et al., 2006), present two large kinds of widely investigated transtion-metal complexes. Herein, we report the title compound (I).

The title compound, (I), presents a macrocation of [Fe3O(CH3COO)6(H2O)3]+, in which Fe3+ is coordinated by four oxygen atoms from four carboxylates of four acetate anions, one central bridged oxygen atom, and one water molecule. The environment of all the Fe ions are distorted octahedral geometry (Fig. 1). The three Fe atoms approximatively reside in an equilateral triangle with an oxide ion in the center [Fe3O]. The Fe—O distances range from 1.897 (2) to 2.126 (3) Å (Table 1).

In the crystal, the components are linked by O—H···O hydrogen bonds generating a three-dimensional framework (Fig. 2 and Table 2).

Related literature top

For related literature, see: Fujihara et al. (1998); Ren et al. (2004); Thirumurugan & Natarajan (2004); Vrubel et al. (2006); Zhang et al. (2005).

Experimental top

Fe(NO3)3.9H2O (1 mmol, 0.404 g) was suspended in 5 ml water and 3 ml (1 mol/L) NaOH solution was added dropwise to produce a brown precipitate, then 25 ml acetic acid were added to the mixture. It was stirred under reflux for 3 h. The solution was filtered, and the filtrate was kept at the room temperature. After one weeks, xxx blocks of (I) were obtained.

Refinement top

H atoms were treated as riding, with C—H distances in the range of 0.93–0.98 Å and O—H distances of 0.82 Å, and were refined as riding with Uiso(H)=1.2Ueq(Cmethylene and Cmethylidyne) and Uiso(H)=1.5Ueq(O or Cmethyl).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with displacement ellipsoids for the non-hydrogen atoms drawn at the 50% probability level.
[Figure 2] Fig. 2. Three-dimensional structure of (I), with hydrogen bonds shown as dashed lines.
Hexa-µ2-acetato-triaqua-µ3-oxido-triiron(III) nitrate acetic acid solvate top
Crystal data top
[Fe3(C2H3O2)6O(H2O)3]NO3·C2H4O2F(000) = 1460
Mr = 713.92Dx = 1.781 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2092 reflections
a = 11.835 (3) Åθ = 2.2–23.2°
b = 14.755 (4) ŵ = 1.71 mm1
c = 15.250 (4) ÅT = 296 K
β = 90.851 (5)°Block, yellow
V = 2662.8 (12) Å30.18 × 0.13 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4953 independent reflections
Radiation source: fine-focus sealed tube3355 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1411
Tmin = 0.750, Tmax = 0.848k = 1717
14072 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.048P)2]
where P = (Fo2 + 2Fc2)/3
4953 reflections(Δ/σ)max = 0.001
378 parametersΔρmax = 0.51 e Å3
9 restraintsΔρmin = 0.41 e Å3
Crystal data top
[Fe3(C2H3O2)6O(H2O)3]NO3·C2H4O2V = 2662.8 (12) Å3
Mr = 713.92Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.835 (3) ŵ = 1.71 mm1
b = 14.755 (4) ÅT = 296 K
c = 15.250 (4) Å0.18 × 0.13 × 0.10 mm
β = 90.851 (5)°
Data collection top
Bruker SMART CCD
diffractometer
4953 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
3355 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 0.848Rint = 0.054
14072 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0449 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.51 e Å3
4953 reflectionsΔρmin = 0.41 e Å3
378 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.40305 (4)0.89656 (3)0.62790 (3)0.02692 (12)
Fe20.17864 (4)0.76827 (3)0.59152 (3)0.02751 (12)
Fe30.16879 (4)0.93399 (3)0.73634 (3)0.02779 (13)
O1W0.5730 (2)0.92274 (16)0.59831 (17)0.0390 (7)
O2W0.1067 (2)0.66185 (17)0.51505 (18)0.0536 (8)
O3W0.0853 (2)1.01043 (16)0.82684 (16)0.0414 (7)
O10.4549 (2)0.76906 (16)0.61642 (19)0.0505 (8)
O20.30533 (19)0.67883 (15)0.61664 (16)0.0373 (6)
O30.3729 (2)0.90801 (17)0.49476 (15)0.0433 (7)
O40.2469 (2)0.79746 (15)0.47350 (15)0.0375 (6)
O50.0995 (2)0.71685 (15)0.69403 (15)0.0379 (6)
O60.0942 (2)0.82725 (15)0.79378 (16)0.0461 (7)
O70.0395 (2)0.84025 (16)0.55730 (15)0.0387 (7)
O80.03183 (19)0.94965 (16)0.65798 (16)0.0406 (7)
O90.2290 (2)1.05548 (15)0.69826 (17)0.0430 (7)
O100.38902 (19)1.03126 (16)0.62901 (17)0.0456 (7)
O110.2928 (2)0.92041 (18)0.82695 (16)0.0492 (8)
O120.4514 (2)0.89345 (18)0.75438 (16)0.0481 (7)
O130.25047 (17)0.86634 (13)0.65078 (14)0.0254 (5)
O170.1754 (3)0.16154 (19)0.9058 (2)0.0782 (11)
O180.2920 (3)0.26869 (19)0.9325 (2)0.0674 (9)
O140.7459 (2)0.9001 (2)0.9425 (2)0.0738 (10)
H140.76980.87980.98930.111*
O150.9248 (2)0.9381 (2)0.92925 (19)0.0637 (9)
C10.4856 (3)0.6134 (2)0.6411 (3)0.0472 (11)
H1A0.44140.55900.64450.071*
H1B0.52580.62240.69560.071*
H1C0.53860.60800.59430.071*
C20.4094 (3)0.6923 (2)0.6240 (2)0.0302 (8)
C30.3290 (3)0.8632 (3)0.3488 (2)0.0479 (11)
H3A0.38370.90930.33610.072*
H3B0.25760.87920.32250.072*
H3C0.35390.80630.32560.072*
C40.3164 (3)0.8553 (2)0.4464 (2)0.0305 (9)
C50.0056 (3)0.6886 (3)0.8275 (2)0.0458 (11)
H5A0.00750.63070.80040.069*
H5B0.06550.71670.84000.069*
H5C0.04780.68030.88110.069*
C60.0711 (3)0.7479 (2)0.7666 (2)0.0317 (9)
C70.1126 (3)0.9443 (3)0.5496 (3)0.0476 (11)
H7A0.13800.99600.58200.071*
H7B0.16960.89800.55040.071*
H7C0.09870.96180.49010.071*
C80.0058 (3)0.9087 (2)0.5905 (2)0.0317 (9)
C90.3287 (3)1.1823 (2)0.6455 (3)0.0512 (12)
H9A0.39751.19350.61470.077*
H9B0.33221.21180.70160.077*
H9C0.26591.20560.61200.077*
C100.3142 (3)1.0824 (2)0.6584 (2)0.0303 (9)
C110.4539 (3)0.8788 (3)0.9092 (2)0.0487 (11)
H11A0.40250.88650.95670.073*
H11B0.51680.91930.91680.073*
H11C0.48070.81740.90840.073*
C120.3942 (3)0.8995 (2)0.8241 (2)0.0324 (9)
O160.1840 (3)0.2745 (2)0.8165 (2)0.0802 (11)
N10.2187 (3)0.2358 (2)0.8830 (2)0.0534 (10)
C130.7984 (4)0.9702 (3)0.8110 (3)0.0624 (13)
H13A0.76941.03060.81630.094*
H13B0.74150.93180.78510.094*
H13C0.86370.97070.77440.094*
C140.8301 (3)0.9353 (3)0.8986 (3)0.0470 (11)
H3AW0.0417 (12)0.9921 (13)0.8637 (11)0.083 (16)*
H1AW0.6123 (14)0.8779 (8)0.5921 (16)0.048 (12)*
H3BW0.1149 (16)1.0579 (9)0.8427 (17)0.085 (16)*
H2AW0.0434 (9)0.6407 (19)0.5202 (14)0.106 (19)*
H2BW0.122 (2)0.667 (3)0.4630 (7)0.16 (3)*
H1BW0.584 (3)0.9594 (9)0.5594 (11)0.079 (16)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0246 (3)0.0245 (2)0.0317 (3)0.0017 (2)0.0026 (2)0.0008 (2)
Fe20.0289 (3)0.0224 (2)0.0313 (3)0.0028 (2)0.0011 (2)0.0004 (2)
Fe30.0276 (3)0.0232 (2)0.0327 (3)0.0019 (2)0.0055 (2)0.0002 (2)
O1W0.0293 (13)0.0336 (13)0.0542 (16)0.0006 (11)0.0079 (12)0.0048 (12)
O2W0.0598 (18)0.0415 (16)0.0590 (19)0.0159 (14)0.0129 (15)0.0030 (14)
O3W0.0436 (15)0.0338 (14)0.0472 (15)0.0071 (12)0.0163 (13)0.0110 (12)
O10.0332 (14)0.0288 (13)0.090 (2)0.0000 (12)0.0072 (14)0.0050 (14)
O20.0375 (14)0.0235 (12)0.0506 (15)0.0018 (11)0.0025 (12)0.0014 (11)
O30.0430 (15)0.0563 (16)0.0306 (13)0.0180 (13)0.0012 (12)0.0004 (12)
O40.0425 (14)0.0368 (13)0.0333 (13)0.0113 (12)0.0046 (11)0.0004 (11)
O50.0445 (15)0.0337 (13)0.0356 (14)0.0096 (12)0.0077 (12)0.0040 (11)
O60.0565 (16)0.0293 (14)0.0530 (16)0.0106 (12)0.0223 (13)0.0000 (12)
O70.0382 (14)0.0376 (14)0.0399 (14)0.0067 (12)0.0069 (12)0.0032 (12)
O80.0323 (14)0.0413 (14)0.0482 (16)0.0094 (12)0.0028 (12)0.0082 (12)
O90.0410 (15)0.0247 (13)0.0638 (17)0.0030 (11)0.0204 (13)0.0019 (12)
O100.0341 (14)0.0250 (13)0.0784 (19)0.0050 (11)0.0198 (14)0.0003 (13)
O110.0411 (15)0.0685 (18)0.0376 (15)0.0119 (14)0.0061 (13)0.0085 (13)
O120.0355 (14)0.0763 (19)0.0324 (14)0.0086 (14)0.0018 (12)0.0012 (14)
O130.0236 (12)0.0226 (11)0.0303 (12)0.0007 (9)0.0018 (10)0.0004 (10)
O170.116 (3)0.0492 (18)0.069 (2)0.0405 (18)0.019 (2)0.0065 (16)
O180.0604 (19)0.0547 (18)0.087 (2)0.0155 (16)0.0065 (18)0.0070 (17)
O140.0485 (18)0.096 (2)0.076 (2)0.0236 (18)0.0037 (16)0.0325 (19)
O150.0425 (17)0.089 (2)0.0599 (19)0.0098 (16)0.0070 (15)0.0113 (17)
C10.050 (2)0.038 (2)0.053 (2)0.0169 (19)0.000 (2)0.0056 (19)
C20.034 (2)0.0310 (18)0.0254 (18)0.0068 (17)0.0036 (15)0.0009 (15)
C30.053 (2)0.060 (3)0.031 (2)0.006 (2)0.0001 (19)0.0040 (19)
C40.0294 (19)0.0318 (19)0.0305 (19)0.0023 (16)0.0027 (16)0.0025 (16)
C50.047 (2)0.047 (2)0.043 (2)0.017 (2)0.0054 (19)0.0111 (19)
C60.0297 (19)0.0257 (19)0.040 (2)0.0044 (15)0.0030 (16)0.0085 (15)
C70.039 (2)0.049 (2)0.054 (3)0.0014 (19)0.008 (2)0.010 (2)
C80.0255 (18)0.035 (2)0.035 (2)0.0030 (16)0.0037 (16)0.0117 (17)
C90.046 (2)0.032 (2)0.076 (3)0.0016 (19)0.013 (2)0.010 (2)
C100.0274 (19)0.0260 (18)0.038 (2)0.0042 (15)0.0007 (16)0.0009 (15)
C110.054 (3)0.050 (2)0.041 (2)0.005 (2)0.008 (2)0.0116 (19)
C120.040 (2)0.0230 (17)0.034 (2)0.0067 (16)0.0057 (17)0.0055 (16)
O160.120 (3)0.070 (2)0.0502 (19)0.002 (2)0.002 (2)0.0049 (17)
N10.063 (2)0.045 (2)0.053 (2)0.0038 (19)0.0088 (19)0.0055 (18)
C130.063 (3)0.066 (3)0.058 (3)0.007 (3)0.001 (2)0.006 (2)
C140.039 (2)0.042 (2)0.061 (3)0.0000 (19)0.005 (2)0.001 (2)
Geometric parameters (Å, º) top
Fe1—O131.897 (2)O12—C121.272 (4)
Fe1—O11.987 (2)O17—N11.260 (4)
Fe1—O101.995 (2)O18—N11.240 (4)
Fe1—O122.005 (3)O14—C141.316 (4)
Fe1—O32.063 (2)O14—H140.8200
Fe1—O1W2.104 (2)O15—C141.209 (5)
Fe2—O131.900 (2)C1—C21.494 (5)
Fe2—O51.985 (2)C1—H1A0.9600
Fe2—O72.021 (2)C1—H1B0.9600
Fe2—O22.030 (2)C1—H1C0.9600
Fe2—O42.030 (2)C3—C41.501 (5)
Fe2—O2W2.126 (3)C3—H3A0.9600
Fe3—O131.916 (2)C3—H3B0.9600
Fe3—O112.011 (3)C3—H3C0.9600
Fe3—O62.013 (2)C5—C61.500 (5)
Fe3—O82.013 (2)C5—H5A0.9600
Fe3—O92.017 (2)C5—H5B0.9600
Fe3—O3W2.048 (2)C5—H5C0.9600
O1W—H1AW0.815 (9)C7—C81.497 (5)
O1W—H1BW0.814 (9)C7—H7A0.9600
O2W—H2AW0.816 (9)C7—H7B0.9600
O2W—H2BW0.819 (9)C7—H7C0.9600
O3W—H3AW0.816 (9)C9—C101.497 (5)
O3W—H3BW0.818 (9)C9—H9A0.9600
O1—C21.260 (4)C9—H9B0.9600
O2—C21.251 (4)C9—H9C0.9600
O3—C41.258 (4)C11—C121.499 (5)
O4—C41.260 (4)C11—H11A0.9600
O5—C61.249 (4)C11—H11B0.9600
O6—C61.270 (4)C11—H11C0.9600
O7—C81.254 (4)O16—N11.229 (5)
O8—C81.268 (4)C13—C141.475 (6)
O9—C101.251 (4)C13—H13A0.9600
O10—C101.251 (4)C13—H13B0.9600
O11—C121.241 (4)C13—H13C0.9600
O13—Fe1—O195.13 (10)Fe2—O13—Fe3119.60 (11)
O13—Fe1—O1098.80 (9)C14—O14—H14109.5
O1—Fe1—O10165.92 (10)C2—C1—H1A109.5
O13—Fe1—O1294.40 (10)C2—C1—H1B109.5
O1—Fe1—O1288.79 (12)H1A—C1—H1B109.5
O10—Fe1—O1292.13 (11)C2—C1—H1C109.5
O13—Fe1—O392.81 (9)H1A—C1—H1C109.5
O1—Fe1—O392.29 (11)H1B—C1—H1C109.5
O10—Fe1—O385.04 (11)O2—C2—O1123.8 (3)
O12—Fe1—O3172.58 (10)O2—C2—C1118.9 (3)
O13—Fe1—O1W176.56 (9)O1—C2—C1117.4 (3)
O1—Fe1—O1W81.82 (10)C4—C3—H3A109.5
O10—Fe1—O1W84.19 (9)C4—C3—H3B109.5
O12—Fe1—O1W87.14 (10)H3A—C3—H3B109.5
O3—Fe1—O1W85.75 (10)C4—C3—H3C109.5
O13—Fe2—O597.45 (9)H3A—C3—H3C109.5
O13—Fe2—O794.56 (9)H3B—C3—H3C109.5
O5—Fe2—O790.68 (10)O3—C4—O4124.8 (3)
O13—Fe2—O294.67 (9)O3—C4—C3118.2 (3)
O5—Fe2—O287.64 (10)O4—C4—C3117.0 (3)
O7—Fe2—O2170.76 (10)C6—C5—H5A109.5
O13—Fe2—O494.54 (9)C6—C5—H5B109.5
O5—Fe2—O4167.95 (10)H5A—C5—H5B109.5
O7—Fe2—O489.59 (10)C6—C5—H5C109.5
O2—Fe2—O490.17 (10)H5A—C5—H5C109.5
O13—Fe2—O2W174.84 (10)H5B—C5—H5C109.5
O5—Fe2—O2W87.69 (11)O5—C6—O6124.6 (3)
O7—Fe2—O2W85.90 (10)O5—C6—C5118.9 (3)
O2—Fe2—O2W84.95 (10)O6—C6—C5116.5 (3)
O4—Fe2—O2W80.32 (10)C8—C7—H7A109.5
O13—Fe3—O1192.62 (10)C8—C7—H7B109.5
O13—Fe3—O696.76 (9)H7A—C7—H7B109.5
O11—Fe3—O686.74 (11)C8—C7—H7C109.5
O13—Fe3—O893.76 (10)H7A—C7—H7C109.5
O11—Fe3—O8173.00 (10)H7B—C7—H7C109.5
O6—Fe3—O889.64 (11)O7—C8—O8124.4 (3)
O13—Fe3—O994.77 (9)O7—C8—C7118.5 (3)
O11—Fe3—O991.68 (11)O8—C8—C7117.1 (3)
O6—Fe3—O9168.42 (10)C10—C9—H9A109.5
O8—Fe3—O990.67 (10)C10—C9—H9B109.5
O13—Fe3—O3W177.83 (10)H9A—C9—H9B109.5
O11—Fe3—O3W86.91 (10)C10—C9—H9C109.5
O6—Fe3—O3W85.33 (10)H9A—C9—H9C109.5
O8—Fe3—O3W86.82 (10)H9B—C9—H9C109.5
O9—Fe3—O3W83.13 (10)O9—C10—O10124.3 (3)
Fe1—O1W—H1AW115.2 (13)O9—C10—C9118.1 (3)
Fe1—O1W—H1BW116 (2)O10—C10—C9117.6 (3)
H1AW—O1W—H1BW111.0 (16)C12—C11—H11A109.5
Fe2—O2W—H2AW126.2 (19)C12—C11—H11B109.5
Fe2—O2W—H2BW112 (3)H11A—C11—H11B109.5
H2AW—O2W—H2BW109.8 (15)C12—C11—H11C109.5
Fe3—O3W—H3AW126.8 (15)H11A—C11—H11C109.5
Fe3—O3W—H3BW117.5 (16)H11B—C11—H11C109.5
H3AW—O3W—H3BW110.7 (16)O11—C12—O12125.1 (3)
C2—O1—Fe1135.3 (2)O11—C12—C11117.6 (3)
C2—O2—Fe2129.6 (2)O12—C12—C11117.3 (3)
C4—O3—Fe1127.6 (2)O16—N1—O18122.8 (4)
C4—O4—Fe2134.9 (2)O16—N1—O17119.9 (4)
C6—O5—Fe2134.0 (2)O18—N1—O17117.2 (4)
C6—O6—Fe3132.3 (2)C14—C13—H13A109.5
C8—O7—Fe2132.1 (2)C14—C13—H13B109.5
C8—O8—Fe3134.2 (2)H13A—C13—H13B109.5
C10—O9—Fe3135.5 (2)C14—C13—H13C109.5
C10—O10—Fe1131.6 (2)H13A—C13—H13C109.5
C12—O11—Fe3134.2 (2)H13B—C13—H13C109.5
C12—O12—Fe1130.9 (2)O15—C14—O14121.4 (4)
Fe1—O13—Fe2120.78 (11)O15—C14—C13124.1 (4)
Fe1—O13—Fe3119.60 (11)O14—C14—C13114.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14···O17i0.821.822.642 (4)178
O3W—H3AW···O15ii0.82 (1)1.89 (1)2.697 (4)168 (2)
O1W—H1AW···O18iii0.82 (1)2.01 (1)2.821 (4)176 (2)
O3W—H3BW···O17iv0.82 (1)1.94 (1)2.742 (4)167 (3)
O2W—H2AW···O15v0.82 (1)2.28 (2)2.904 (4)134 (2)
O1W—H1BW···O3vi0.81 (1)2.19 (1)2.948 (3)155 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z; (iii) x+1, y+1/2, z+3/2; (iv) x, y+1, z; (v) x1, y+3/2, z1/2; (vi) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Fe3(C2H3O2)6O(H2O)3]NO3·C2H4O2
Mr713.92
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.835 (3), 14.755 (4), 15.250 (4)
β (°) 90.851 (5)
V3)2662.8 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.71
Crystal size (mm)0.18 × 0.13 × 0.10
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.750, 0.848
No. of measured, independent and
observed [I > 2σ(I)] reflections
14072, 4953, 3355
Rint0.054
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.106, 1.00
No. of reflections4953
No. of parameters378
No. of restraints9
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.41

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Selected bond lengths (Å) top
Fe1—O131.897 (2)Fe2—O22.030 (2)
Fe1—O11.987 (2)Fe2—O42.030 (2)
Fe1—O101.995 (2)Fe2—O2W2.126 (3)
Fe1—O122.005 (3)Fe3—O131.916 (2)
Fe1—O32.063 (2)Fe3—O112.011 (3)
Fe1—O1W2.104 (2)Fe3—O62.013 (2)
Fe2—O131.900 (2)Fe3—O82.013 (2)
Fe2—O51.985 (2)Fe3—O92.017 (2)
Fe2—O72.021 (2)Fe3—O3W2.048 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O14—H14···O17i0.821.822.642 (4)178
O3W—H3AW···O15ii0.816 (9)1.894 (9)2.697 (4)168 (2)
O1W—H1AW···O18iii0.815 (9)2.008 (10)2.821 (4)176 (2)
O3W—H3BW···O17iv0.818 (9)1.938 (13)2.742 (4)167 (3)
O2W—H2AW···O15v0.816 (9)2.28 (2)2.904 (4)134 (2)
O1W—H1BW···O3vi0.814 (9)2.188 (12)2.948 (3)155 (2)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x1, y, z; (iii) x+1, y+1/2, z+3/2; (iv) x, y+1, z; (v) x1, y+3/2, z1/2; (vi) x+1, y+2, z+1.
 

Acknowledgements

This work was supported by the Basic Research Foundation for Natural Science of Henan University.

References

First citationBruker (2001). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFujihara, T., Aonahata, J., Kumakura, S., Nagasawa, A., Murakami, K. & Ito, T. (1998). Inorg. Chem. 37, 3779–3784.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRen, X. M., Okudera, H. & Kremer, R. K. (2004). Acta Cryst. E60, m14–m16.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThirumurugan, A. & Natarajan, S. (2004). Dalton Trans. pp. 2923–2928.  Web of Science CSD CrossRef Google Scholar
First citationVrubel, H., Hasegawa, T., Oliverira, E. & Nunes, F. S. (2006). Inorg. Chem. Commun. 9, 208–211.  Web of Science CrossRef CAS Google Scholar
First citationZhang, H. T., Li, Y. Z., Wang, H. Q., Nfor, E. N. & You, X. Z. (2005). CrystEngComm, 7, 578–585.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds