metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­bis­(3′-hydr­­oxy-2,2′-bi­pyridine-3-olato-κ2N,N′)zinc(II)

aDepartment of Chemistry and Chemical Engineering, Institute of Materials Chemistry, Binzhou University, Binzhou 256603, People's Republic of China, and bDepartment of Chemistry, Shandong Normal University, Jinan 250014, People's Republic of China
*Correspondence e-mail: zhangshiguo1970@yahoo.com.cn

(Received 25 May 2008; accepted 31 July 2008; online 6 August 2008)

In the title complex, [Zn(C10H7N2O2)2(H2O)], the ZnII ion and water O atom are located on a crystallographic twofold rotation axis and the metal atom assumes a distorted trigonal-bipyramidal ZnN4O coordination geometry. An intra­molecular O—H⋯O hydrogen bond occurs within the ligand and inter­molecular O—H⋯O hydrogen bonds involving the water mol­ecule result in a sheet structure in the crystal structure. In addition, a short C—O⋯π contact between the O atom of the deprotonated hydroxyl group and a nearby pyridine ring [O⋯Cg = 3.977 (2) Å, where Cg is the centroid of the pyridine ring] is observed.

Related literature

For related structures, see: Cargill Thompson et al. (1996[Cargill Thompson, A. M. W., Jeffery, J. C., Liard, D. J. & Ward, M. D. (1996). J. Chem. Soc. Dalton Trans. pp. 879-884.]); Stephenson & Hardie (2007[Stephenson, M. D. & Hardie, M. J. (2007). CrystEngComm. 9, 496-502.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C10H7N2O2)2(H2O)]

  • Mr = 457.74

  • Orthorhombic, P b c n

  • a = 13.931 (2) Å

  • b = 9.1685 (16) Å

  • c = 14.364 (3) Å

  • V = 1834.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 298 (2) K

  • 0.40 × 0.21 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.608, Tmax = 0.770

  • 8883 measured reflections

  • 1621 independent reflections

  • 1293 reflections with I > 2σ(I)

  • Rint = 0.035

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.083

  • S = 1.05

  • 1621 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—N1 2.081 (2)
Zn1—N2 2.0716 (18)
O3—Zn1 2.002 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H5⋯O2 0.82 1.61 2.410 (3) 165
O3—H1⋯O2i 0.80 1.83 2.630 (2) 174
Symmetry code: (i) [x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supporting information


Comment top

2,2'-Bipyridine-3,3'-diol (bpd) has the potential to be a useful multi-dentate ligand and may act as a bridging ligand due to coordination of its N and O atoms. A few multi-nuclear complexes have been synthesized with mono-deprotonated bpd as a bridging ligand (Cargill Thompson et al. 1996; Stephenson & Hardie, 2007). We attempted to prepare a similar compound, but instead we obtained the mono-nuclear title complex, (I), (Fig. 1) and report its structure herein.

The Zn1 atom in (I) lies in a twofold axis and is in a distorted trigonal bipyramidal geometry (Table 1). The dihedral angle between the N1 and N2 ring mean planes is 13.08 (12)°. An intramolecular O—H···O hydrogen bond between O atom of deprotonated hydroxyl and hydroxyl group (Table 2) occcurs within the ligand. The water molecule (O atom site symmetry 2) makes an intermolecular O—H···.O hydrogen bond to result in a supramolecular sheet structure in the ab plane (Fig. 2). In addition to the hydrogen bonds there is weak interaction between C—O bond and pyridine ring and the relevant distances are as follows: C4—O2···Cg1i = 3.977 (2) Å and C4—O2···Cg1iperp = 3.635 Å [Cg1 is the centroid of N1/C1—C5 ring, C4—O2···Cg1iperp is the perpendicular distance from O2 atom to ring Cg1i; symmetry code: (i) 1/2-x, 1/2+y, z].

Related literature top

For related structure, see: Cargill Thompson et al. (1996); Stephenson & Hardie (2007).

Experimental top

A 10-ml H2O solution of ZnCl2 (0.1214 g, 0.891 mmol) was added to a 10-ml hot ethanol solution containing 2,2'-bipyridine-3,3'-diol (0.1664 g, 0.884 mmol), and the mixed solution was stirred for a few minutes. Yellow blocks of (I) were obtained after the solution had been allowed to stand at room temperature for two weeks.

Refinement top

The water H atom was located in a difference Fourier map and refined as riding in its as found relative position with Uiso(H) = 1.5Ueq(O). The other H atoms geometrically placed (C—H = 0.93-0.96Å, O—H = 0.82Å) and refined as riding with with Uiso = Uiso = 1.2Ueq(C) or 1.5Ueq(methyl C, O).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Figures top
[Figure 1] Fig. 1. View of (I), showing displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. The hydrogen bond is indicated by a dashed line. Symmetry code: (i) -1/2 + x, -1/2 + y, 3/2 - z
[Figure 2] Fig. 2. Intermolecular hydrogen bonds (dashed line) in the crystal of (I).
Aquabis(3'-hydroxy-2,2'-bipyridine-3-olato-κ2N,N')zinc(II) top
Crystal data top
[Zn(C10H7N2O2)2(H2O)]F(000) = 936
Mr = 457.74Dx = 1.657 Mg m3
Orthorhombic, PbcnMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2abCell parameters from 2299 reflections
a = 13.931 (2) Åθ = 2.7–24.6°
b = 9.1685 (16) ŵ = 1.38 mm1
c = 14.364 (3) ÅT = 298 K
V = 1834.7 (6) Å3Block, yellow
Z = 40.40 × 0.21 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1621 independent reflections
Radiation source: fine-focus sealed tube1293 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1516
Tmin = 0.608, Tmax = 0.770k = 910
8883 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: difmap and geom
wR(F2) = 0.083H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0435P)2 + 0.4048P]
where P = (Fo2 + 2Fc2)/3
1621 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
[Zn(C10H7N2O2)2(H2O)]V = 1834.7 (6) Å3
Mr = 457.74Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 13.931 (2) ŵ = 1.38 mm1
b = 9.1685 (16) ÅT = 298 K
c = 14.364 (3) Å0.40 × 0.21 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1621 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1293 reflections with I > 2σ(I)
Tmin = 0.608, Tmax = 0.770Rint = 0.035
8883 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.05Δρmax = 0.24 e Å3
1621 reflectionsΔρmin = 0.22 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.18495 (17)0.0831 (3)0.84200 (18)0.0497 (6)
H8A0.14430.13180.88290.060*
C20.28226 (18)0.0979 (3)0.85235 (18)0.0505 (6)
H70.30780.15600.89930.061*
C30.34041 (17)0.0251 (3)0.7919 (2)0.0484 (6)
H6A0.40660.03460.79800.058*
C40.30414 (16)0.0627 (3)0.72164 (17)0.0405 (6)
C50.20250 (14)0.0718 (2)0.71420 (15)0.0328 (5)
C60.14629 (15)0.1528 (2)0.64177 (14)0.0335 (5)
C70.18121 (17)0.2589 (3)0.57966 (15)0.0433 (6)
C80.1158 (2)0.3273 (3)0.52075 (16)0.0532 (7)
H40.13710.40130.48160.064*
C90.0216 (2)0.2884 (3)0.51908 (18)0.0530 (7)
H30.02120.33290.47830.064*
C100.00846 (16)0.1818 (3)0.57930 (17)0.0482 (6)
H20.07240.15280.57820.058*
N10.14707 (14)0.00122 (19)0.77522 (15)0.0401 (5)
N20.05150 (12)0.11824 (19)0.63953 (12)0.0379 (5)
O10.27183 (13)0.3017 (2)0.57387 (13)0.0673 (6)
H50.30440.25530.61110.101*
O20.36348 (11)0.1306 (2)0.66513 (12)0.0574 (5)
O30.00000.2225 (3)0.75000.0640 (8)
H10.04430.26570.77300.096*
Zn10.00000.00413 (4)0.75000.03787 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0382 (14)0.0538 (16)0.0571 (16)0.0007 (11)0.0022 (12)0.0162 (12)
C20.0420 (14)0.0485 (15)0.0610 (16)0.0054 (11)0.0147 (12)0.0037 (12)
C30.0248 (12)0.0561 (16)0.0644 (16)0.0022 (11)0.0092 (13)0.0119 (13)
C40.0291 (12)0.0451 (13)0.0474 (13)0.0045 (11)0.0016 (11)0.0133 (11)
C50.0264 (11)0.0330 (12)0.0389 (12)0.0026 (9)0.0007 (9)0.0086 (10)
C60.0311 (12)0.0340 (11)0.0353 (11)0.0003 (9)0.0039 (9)0.0069 (9)
C70.0451 (14)0.0455 (14)0.0393 (13)0.0082 (11)0.0066 (11)0.0059 (11)
C80.0669 (19)0.0496 (16)0.0432 (14)0.0014 (13)0.0054 (13)0.0075 (12)
C90.0555 (16)0.0570 (17)0.0464 (15)0.0136 (14)0.0026 (12)0.0049 (13)
C100.0356 (14)0.0567 (16)0.0525 (15)0.0114 (11)0.0028 (11)0.0013 (13)
N10.0276 (11)0.0446 (12)0.0482 (11)0.0002 (8)0.0001 (9)0.0067 (9)
N20.0272 (10)0.0421 (11)0.0444 (11)0.0025 (8)0.0014 (8)0.0001 (8)
O10.0538 (12)0.0821 (14)0.0661 (12)0.0260 (10)0.0022 (9)0.0184 (11)
O20.0277 (9)0.0776 (13)0.0669 (11)0.0141 (8)0.0075 (8)0.0009 (10)
O30.0353 (14)0.0391 (14)0.118 (2)0.0000.0278 (13)0.000
Zn10.0232 (2)0.0418 (3)0.0487 (3)0.0000.00383 (15)0.000
Geometric parameters (Å, º) top
C1—N11.328 (3)C7—C81.392 (3)
C1—C21.370 (3)C8—C91.361 (4)
C1—H8A0.9300C8—H40.9300
C2—C31.362 (4)C9—C101.371 (4)
C2—H70.9300C9—H30.9300
C3—C41.386 (4)C10—N21.336 (3)
C3—H6A0.9300C10—H20.9300
C4—O21.315 (3)O1—H50.8200
C4—C51.422 (3)O3—H10.8042
C5—N11.346 (3)Zn1—N12.081 (2)
C5—C61.499 (3)Zn1—N22.0716 (18)
C6—N21.359 (3)Zn1—N2i2.0716 (18)
C6—C71.407 (3)Zn1—N1i2.081 (2)
C7—O11.324 (3)O3—Zn12.002 (2)
N1—C1—C2121.8 (2)C8—C9—C10118.0 (2)
N1—C1—H8A119.1C8—C9—H3121.0
C2—C1—H8A119.1C10—C9—H3121.0
C3—C2—C1118.1 (2)N2—C10—C9121.9 (2)
C3—C2—H7121.0N2—C10—H2119.0
C1—C2—H7121.0C9—C10—H2119.0
C2—C3—C4122.1 (2)C1—N1—C5121.6 (2)
C2—C3—H6A118.9C1—N1—Zn1120.67 (16)
C4—C3—H6A118.9C5—N1—Zn1117.24 (15)
O2—C4—C3119.7 (2)C10—N2—C6121.4 (2)
O2—C4—C5123.5 (2)C10—N2—Zn1121.03 (15)
C3—C4—C5116.8 (2)C6—N2—Zn1116.41 (14)
N1—C5—C4119.5 (2)C7—O1—H5109.5
N1—C5—C6113.49 (18)Zn1—O3—H1119.5
C4—C5—C6126.9 (2)O3—Zn1—N2122.79 (5)
N2—C6—C7118.8 (2)O3—Zn1—N2i122.79 (5)
N2—C6—C5114.11 (18)N2—Zn1—N2i114.42 (10)
C7—C6—C5127.03 (19)O3—Zn1—N190.73 (5)
O1—C7—C8116.9 (2)N2—Zn1—N177.61 (7)
O1—C7—C6125.0 (2)N2i—Zn1—N1101.58 (7)
C8—C7—C6118.1 (2)O3—Zn1—N1i90.73 (5)
C9—C8—C7121.6 (2)N2—Zn1—N1i101.58 (7)
C9—C8—H4119.2N2i—Zn1—N1i77.61 (7)
C7—C8—H4119.2N1—Zn1—N1i178.53 (10)
N1—C1—C2—C30.3 (4)C4—C5—N1—Zn1172.45 (15)
C1—C2—C3—C40.3 (4)C6—C5—N1—Zn15.8 (2)
C2—C3—C4—O2180.0 (2)C9—C10—N2—C62.3 (4)
C2—C3—C4—C51.0 (4)C9—C10—N2—Zn1165.07 (19)
O2—C4—C5—N1179.9 (2)C7—C6—N2—C100.6 (3)
C3—C4—C5—N11.2 (3)C5—C6—N2—C10179.53 (19)
O2—C4—C5—C62.1 (4)C7—C6—N2—Zn1167.35 (15)
C3—C4—C5—C6176.8 (2)C5—C6—N2—Zn111.6 (2)
N1—C5—C6—N211.3 (3)C10—N2—Zn1—O3102.57 (17)
C4—C5—C6—N2166.8 (2)C6—N2—Zn1—O389.42 (15)
N1—C5—C6—C7167.5 (2)C10—N2—Zn1—N2i77.43 (17)
C4—C5—C6—C714.4 (3)C6—N2—Zn1—N2i90.58 (15)
N2—C6—C7—O1179.3 (2)C10—N2—Zn1—N1174.67 (19)
C5—C6—C7—O11.9 (4)C6—N2—Zn1—N16.65 (14)
N2—C6—C7—C82.2 (3)C10—N2—Zn1—N1i4.08 (19)
C5—C6—C7—C8176.6 (2)C6—N2—Zn1—N1i172.10 (14)
O1—C7—C8—C9178.0 (2)C1—N1—Zn1—O348.31 (19)
C6—C7—C8—C93.4 (4)C5—N1—Zn1—O3123.54 (16)
C7—C8—C9—C101.8 (4)C1—N1—Zn1—N2171.8 (2)
C8—C9—C10—N21.1 (4)C5—N1—Zn1—N20.05 (16)
C2—C1—N1—C50.1 (4)C1—N1—Zn1—N2i75.4 (2)
C2—C1—N1—Zn1171.39 (19)C5—N1—Zn1—N2i112.72 (16)
C4—C5—N1—C10.7 (3)C1—N1—Zn1—N1i131.69 (18)
C6—C5—N1—C1177.6 (2)C5—N1—Zn1—N1i56.46 (16)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H5···O20.821.612.410 (3)165
O3—H1···O2ii0.801.832.630 (2)174
Symmetry code: (ii) x1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Zn(C10H7N2O2)2(H2O)]
Mr457.74
Crystal system, space groupOrthorhombic, Pbcn
Temperature (K)298
a, b, c (Å)13.931 (2), 9.1685 (16), 14.364 (3)
V3)1834.7 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.40 × 0.21 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.608, 0.770
No. of measured, independent and
observed [I > 2σ(I)] reflections
8883, 1621, 1293
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.05
No. of reflections1621
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.22

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXTL (Sheldrick, 2008) and local programs.

Selected bond lengths (Å) top
Zn1—N12.081 (2)O3—Zn12.002 (2)
Zn1—N22.0716 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H5···O20.821.612.410 (3)165
O3—H1···O2i0.801.832.630 (2)174
Symmetry code: (i) x1/2, y1/2, z+3/2.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province of China (Grant No. Y2007B26).

References

First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCargill Thompson, A. M. W., Jeffery, J. C., Liard, D. J. & Ward, M. D. (1996). J. Chem. Soc. Dalton Trans. pp. 879–884.  CrossRef Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStephenson, M. D. & Hardie, M. J. (2007). CrystEngComm. 9, 496–502.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds