Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The complete title trinuclear CuII complex, [Cu3Cl6(C14H16N3O2)2], is generated by twofold symmetry with one Cu atom lying on the rotation axis. The central Cu atom adopts a distorted tetra­hedral CuCl4 geometry. The terminal Cu atom is five-coordinated in a distorted square-pyramidal coordination environment consisting of three N atoms of the ligand, one bridging Cl atom and one terminal Cl atom. Inter­molecular C—H...Cl hydrogen bonds help to establish the packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807056838/hb2633sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807056838/hb2633Isup2.hkl
Contains datablock I

CCDC reference: 672656

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.047
  • wR factor = 0.088
  • Data-to-parameter ratio = 15.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT128_ALERT_4_C Non-standard setting of Space group P2/c .... P2/n PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Cu2 PLAT324_ALERT_2_C Check for Possibly Missing H on Coordinating.... N2 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 8
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.04 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu2 (2) 2.02
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Transition metals complexed with multidentate Schiff base ligands result in homo and/or heteronuclear metal complexes with insteresting stereochemistry (e.g. Erxleben et al., 2001). Such species can be used as biological models, catalysis, and molecular ferromagnets (Mukherjee et al., 2002). The Schiff base N,N'-bis(2-furylmethylene)diethylenetriamine is considered to be a good chelating ligand, which can coordinate to transition metals as a tridentate, tetradentate or pentadentate ligand, with consequent variable chemical properties. We report here the synthesis and crystal structure of the title compound, (I), a new copper(II) complex, with a multidentate Schiff base ligand derived from the condensation of 2-furaldehyde and diethylenetriamine.

The complete molecule of (I) (Fig. 1) is generated by 2-fold symmetry. The terminal Cu1 atom is five-coordinated in a distorted square-pyramidal coordination environment consisting of three N atoms of the ligand, one bridging Cl atom and one terminal Cl atom. Cu2 (site symmetry 2) is tetrahedrally coordinated by two bridging Cl atoms and two terminal Cl atoms (Table 1). The two five-membered rings Cu1—N1—C11—C12—N2 and Cu1—N2—C13—C14—N3 form a dihedral angle of 5.7 (3)°, and the dihedral angle between the mean planes of the furan rings is 25.7 (3) °. The Cu1···Cu2 separation is 4.6059 (9) Å.

In the crystal, intermolecular C—H···Cl hydrogen bonds lead to a three-dimensional network (Table 2).

Related literature top

For background, see: Erxleben et al. (2001); Mukherjee et al. (2002).

Experimental top

2-Furaldehyde (4 mmol, 384.4 mg) was added dropwise to a dichloromethane (20 ml) solution of diethylenetriamine (2 mmol, 206.4 mg). The mixture was heated under reflux with stirring for 1.5 h. An absolute ethanol solution (5 ml) of cupric chloride dihydrate (3 mmol, 511.4 mg) was then added dropwise, and the mixture was stirred at room temperature for another 15 h. The solution was filtered off, the filterate was kept at room temperature for about 12 days, after which large pale blue blocks of (I) were obtained.

Refinement top

All H-atoms were positioned geometrically and refined using a riding model, with with C—H (methyne) 0.93, C—H = 0.97 (methylene), C—H 0.93 Å (aromatic) and Uiso(H) =1.2Ueq(C).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. Atoms labelled with the suffix A are generated by the symmetry operation (-x + 1/2, y, -z + 3/2). H atoms have been omitted for clarity.
Di-µ-chlorido-1:2κ2Cl,2:3κ2Cl-tetrachlorido-1κCl,2κ2Cl,3κCl- bis[N,N''-bis(2-furylmethylene)diethylenetriamine]- 1κ3N,N',N'';3κ3N,N',N''-tricopper(II) top
Crystal data top
[Cu3Cl6(C14H16N3O2)2]F(000) = 926
Mr = 919.92Dx = 1.676 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yacCell parameters from 1576 reflections
a = 10.9456 (15) Åθ = 2.9–20.0°
b = 7.5287 (10) ŵ = 2.22 mm1
c = 22.248 (2) ÅT = 298 K
β = 96.048 (2)°Block, pale blue
V = 1823.1 (4) Å30.26 × 0.14 × 0.05 mm
Z = 2
Data collection top
Siemens SMART CCD
diffractometer
3200 independent reflections
Radiation source: fine-focus sealed tube1749 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1113
Tmin = 0.597, Tmax = 0.897k = 68
8801 measured reflectionsl = 2126
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0225P)2]
where P = (Fo2 + 2Fc2)/3
3200 reflections(Δ/σ)max = 0.002
213 parametersΔρmax = 0.64 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Cu3Cl6(C14H16N3O2)2]V = 1823.1 (4) Å3
Mr = 919.92Z = 2
Monoclinic, P2/nMo Kα radiation
a = 10.9456 (15) ŵ = 2.22 mm1
b = 7.5287 (10) ÅT = 298 K
c = 22.248 (2) Å0.26 × 0.14 × 0.05 mm
β = 96.048 (2)°
Data collection top
Siemens SMART CCD
diffractometer
3200 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1749 reflections with I > 2σ(I)
Tmin = 0.597, Tmax = 0.897Rint = 0.066
8801 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.088H-atom parameters constrained
S = 0.99Δρmax = 0.64 e Å3
3200 reflectionsΔρmin = 0.42 e Å3
213 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C130.4074 (5)0.2812 (7)0.6330 (2)0.0646 (16)
H13A0.39690.35040.66890.077*
H13B0.45370.35170.60680.077*
Cu10.45072 (5)0.05268 (9)0.58051 (3)0.0527 (2)
Cu20.25000.13781 (14)0.75000.0624 (3)
Cl10.42526 (12)0.2454 (2)0.50298 (6)0.0691 (5)
Cl20.32170 (13)0.2627 (2)0.66945 (6)0.0689 (4)
Cl30.07882 (15)0.0122 (2)0.71301 (7)0.0956 (6)
C110.6627 (5)0.0402 (8)0.6707 (2)0.0605 (16)
H11A0.64510.09610.70820.073*
H11B0.75110.02970.67110.073*
C70.1142 (5)0.1623 (8)0.4910 (2)0.0537 (15)
C20.7637 (5)0.3940 (8)0.6357 (3)0.0523 (15)
O20.0691 (3)0.1249 (5)0.43235 (18)0.0719 (12)
O10.8276 (4)0.3279 (6)0.68845 (18)0.0753 (12)
C60.2281 (5)0.0728 (7)0.5094 (2)0.0513 (14)
H60.25000.01480.48310.062*
C10.6602 (5)0.2975 (8)0.6072 (2)0.0528 (15)
H10.62040.35520.57370.063*
C50.9170 (6)0.4454 (11)0.7032 (3)0.086 (2)
H50.97460.43470.73690.104*
C140.2835 (5)0.2341 (7)0.6005 (2)0.0596 (15)
H14A0.24620.33780.58020.071*
H14B0.22920.19110.62910.071*
C30.8128 (5)0.5445 (8)0.6198 (2)0.0615 (16)
H30.78680.61410.58640.074*
C80.0327 (5)0.2627 (8)0.5169 (3)0.0640 (16)
H80.04120.30540.55640.077*
C90.0679 (6)0.2912 (9)0.4730 (3)0.078 (2)
H90.13920.35440.47790.093*
C40.9142 (6)0.5794 (10)0.6643 (3)0.085 (2)
H40.96730.67610.66570.101*
C100.0405 (6)0.2098 (9)0.4234 (3)0.074 (2)
H100.09040.21080.38690.088*
N10.6121 (3)0.1490 (6)0.61850 (17)0.0478 (11)
N30.3035 (4)0.0958 (6)0.55647 (19)0.0488 (12)
N20.4730 (4)0.1175 (6)0.64975 (17)0.0529 (12)
C120.6046 (5)0.1397 (8)0.6653 (2)0.0672 (17)
H12A0.63920.20770.63410.081*
H12B0.62020.20330.70320.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C130.077 (4)0.051 (4)0.066 (4)0.003 (3)0.006 (3)0.012 (3)
Cu10.0446 (4)0.0592 (5)0.0538 (4)0.0022 (4)0.0024 (3)0.0115 (4)
Cu20.0607 (7)0.0705 (8)0.0559 (6)0.0000.0051 (5)0.000
Cl10.0545 (9)0.0818 (12)0.0691 (10)0.0113 (8)0.0027 (7)0.0301 (8)
Cl20.0692 (10)0.0623 (11)0.0764 (10)0.0040 (8)0.0138 (8)0.0099 (8)
Cl30.0959 (13)0.1257 (18)0.0656 (11)0.0453 (12)0.0108 (9)0.0127 (10)
C110.055 (4)0.067 (5)0.057 (4)0.002 (3)0.005 (3)0.013 (3)
C70.050 (4)0.056 (4)0.054 (4)0.007 (3)0.003 (3)0.011 (3)
C20.043 (3)0.058 (5)0.057 (4)0.002 (3)0.008 (3)0.003 (3)
O20.057 (3)0.088 (3)0.069 (3)0.002 (2)0.003 (2)0.007 (2)
O10.066 (3)0.083 (4)0.075 (3)0.008 (3)0.003 (2)0.007 (2)
C60.050 (3)0.050 (4)0.056 (4)0.005 (3)0.014 (3)0.005 (3)
C10.045 (4)0.065 (5)0.049 (3)0.015 (3)0.010 (3)0.002 (3)
C50.070 (5)0.102 (7)0.084 (5)0.019 (5)0.004 (4)0.020 (5)
C140.063 (4)0.054 (4)0.061 (4)0.009 (3)0.005 (3)0.000 (3)
C30.058 (4)0.056 (4)0.073 (4)0.001 (4)0.014 (3)0.002 (3)
C80.056 (4)0.065 (5)0.071 (4)0.012 (3)0.008 (3)0.004 (3)
C90.052 (4)0.066 (5)0.115 (6)0.005 (3)0.003 (4)0.017 (4)
C40.064 (4)0.075 (6)0.117 (6)0.029 (4)0.023 (4)0.033 (5)
C100.051 (4)0.078 (6)0.087 (5)0.011 (4)0.013 (4)0.033 (4)
N10.043 (3)0.057 (3)0.044 (3)0.005 (2)0.006 (2)0.008 (2)
N30.049 (3)0.048 (3)0.052 (3)0.001 (2)0.013 (2)0.001 (2)
N20.053 (3)0.048 (3)0.055 (3)0.008 (2)0.009 (2)0.009 (2)
C120.080 (5)0.052 (5)0.069 (4)0.010 (4)0.004 (3)0.014 (3)
Geometric parameters (Å, º) top
C13—N21.455 (6)O2—C101.356 (6)
C13—C141.510 (6)O1—C51.334 (7)
C13—H13A0.9700C6—N31.274 (5)
C13—H13B0.9700C6—H60.9300
Cu1—N31.988 (4)C1—N11.273 (6)
Cu1—N21.999 (4)C1—H10.9300
Cu1—N12.011 (4)C5—C41.327 (8)
Cu1—Cl12.2489 (15)C5—H50.9300
Cu1—Cl22.9998 (16)C14—N31.462 (6)
Cu2—Cl22.2379 (14)C14—H14A0.9700
Cu2—Cl2i2.2379 (14)C14—H14B0.9700
Cu2—Cl32.2668 (16)C3—C41.432 (7)
Cu2—Cl3i2.2668 (16)C3—H30.9300
C11—N11.481 (6)C8—C91.409 (7)
C11—C121.495 (7)C8—H80.9300
C11—H11A0.9700C9—C101.324 (8)
C11—H11B0.9700C9—H90.9300
C7—C81.344 (7)C4—H40.9300
C7—O21.376 (5)C10—H100.9300
C7—C61.439 (7)N2—C121.455 (6)
C2—C31.318 (7)C12—H12A0.9700
C2—O11.393 (6)C12—H12B0.9700
C2—C11.436 (7)
N2—C13—C14108.6 (4)C2—C1—H1113.6
N2—C13—H13A110.0C4—C5—O1112.2 (6)
C14—C13—H13A110.0C4—C5—H5123.9
N2—C13—H13B110.0O1—C5—H5123.9
C14—C13—H13B110.0N3—C14—C13107.3 (4)
H13A—C13—H13B108.4N3—C14—H14A110.3
N3—Cu1—N282.91 (18)C13—C14—H14A110.3
N3—Cu1—N1165.25 (18)N3—C14—H14B110.3
N2—Cu1—N182.92 (17)C13—C14—H14B110.3
N3—Cu1—Cl197.19 (13)H14A—C14—H14B108.5
N2—Cu1—Cl1179.66 (14)C2—C3—C4106.3 (6)
N1—Cu1—Cl197.01 (13)C2—C3—H3126.9
N1—Cu1—Cl289.22 (12)C4—C3—H3126.9
N2—Cu1—Cl281.79 (13)C7—C8—C9107.1 (6)
N3—Cu1—Cl292.83 (13)C7—C8—H8126.4
Cl1—Cu1—Cl297.87 (5)C9—C8—H8126.4
Cl2—Cu2—Cl2i130.30 (9)C10—C9—C8106.2 (6)
Cl2—Cu2—Cl3105.36 (5)C10—C9—H9126.9
Cl2i—Cu2—Cl398.85 (6)C8—C9—H9126.9
Cl2—Cu2—Cl3i98.85 (5)C5—C4—C3105.9 (6)
Cl2i—Cu2—Cl3i105.36 (5)C5—C4—H4127.1
Cl3—Cu2—Cl3i120.23 (11)C3—C4—H4127.1
N1—C11—C12108.5 (4)C9—C10—O2111.7 (6)
N1—C11—H11A110.0C9—C10—H10124.1
C12—C11—H11A110.0O2—C10—H10124.1
N1—C11—H11B110.0C1—N1—C11120.9 (5)
C12—C11—H11B110.0C1—N1—Cu1126.7 (4)
H11A—C11—H11B108.4C11—N1—Cu1111.7 (3)
C8—C7—O2109.5 (5)C6—N3—C14121.2 (4)
C8—C7—C6137.4 (6)C6—N3—Cu1125.5 (4)
O2—C7—C6112.8 (5)C14—N3—Cu1113.2 (3)
C3—C2—O1110.5 (5)C12—N2—C13114.4 (5)
C3—C2—C1129.9 (6)C12—N2—Cu1107.1 (3)
O1—C2—C1119.6 (5)C13—N2—Cu1109.2 (3)
C10—O2—C7105.5 (5)N2—C12—C11108.5 (5)
C5—O1—C2105.1 (5)N2—C12—H12A110.0
N3—C6—C7129.5 (5)C11—C12—H12A110.0
N3—C6—H6115.2N2—C12—H12B110.0
C7—C6—H6115.2C11—C12—H12B110.0
N1—C1—C2132.9 (5)H12A—C12—H12B108.4
N1—C1—H1113.6
Symmetry code: (i) x+1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl3ii0.932.803.669 (7)156
C10—H10···Cl3iii0.932.803.451 (8)128
Symmetry codes: (ii) x+1, y+1, z; (iii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu3Cl6(C14H16N3O2)2]
Mr919.92
Crystal system, space groupMonoclinic, P2/n
Temperature (K)298
a, b, c (Å)10.9456 (15), 7.5287 (10), 22.248 (2)
β (°) 96.048 (2)
V3)1823.1 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.22
Crystal size (mm)0.26 × 0.14 × 0.05
Data collection
DiffractometerSiemens SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.597, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
8801, 3200, 1749
Rint0.066
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.088, 0.99
No. of reflections3200
No. of parameters213
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.42

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Selected bond lengths (Å) top
Cu1—N31.988 (4)Cu1—Cl22.9998 (16)
Cu1—N21.999 (4)Cu2—Cl22.2379 (14)
Cu1—N12.011 (4)Cu2—Cl32.2668 (16)
Cu1—Cl12.2489 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl3i0.932.803.669 (7)156
C10—H10···Cl3ii0.932.803.451 (8)128
Symmetry codes: (i) x+1, y+1, z; (ii) x, y, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds