Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, {[Zn2(C10H8O6)2(C10H14N4)(H2O)2]·2H2O}n, the ZnII atom is six-coordinated by one N atom from one 1,4-bis­(1H-imidazol-l-yl)butane ligand and five O atoms from two different (p-phenyl­enedi­oxy)diacetate ligands and one water mol­ecule in a very distorted ZnNO5 octa­hedral environment. Two (p-phenyl­enedi­oxy)diacetate ligands bridge two ZnII atoms to form a dimer. The dimers are further linked by the centrosymmetric 1,4-bis­(1H-imidazol-l-yl)butane ligands, thus forming a chain structure. O—H...O hydrogen bonds link the chains, forming a three-dimensional supra­molecular network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807052518/hb2591sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807052518/hb2591Isup2.hkl
Contains datablock I

CCDC reference: 667230

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.050
  • wR factor = 0.107
  • Data-to-parameter ratio = 13.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 200 Deg. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 4
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Zn1 (2) 2.10 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 7
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

As part of the ongoing effort to create new coordinatiom polymer chain structures (Chen & Liu, 2002; Che et al., 2006), we selected 1,4-benzenedioxydiacetic acid (1,4-H2bdd) and 1-(4-(1H-imidazole-l-yl)butyl)-1H-imidazole (ibi) as bridging ligands, in combination with zinc cations, generating a new chain coordination polymer, [Zn2(1,4-bdd)2(ibi)(H2O)2].2H2O, (I), which is reported here.

The selected bond lengths and angles are listed in Table 1. In compound (I), the ZnII atom is six-coordinated by one N atom from one ibi ligand, and five O atoms from two different 1,4-bdd ligands and one water molecule in a very distorted octahedral environment (Fig. 1). As shown in Fig. 2, two 1,4-bdd ligands bridge two ZnII atoms to form a dimer. The dimers are further linked by ibi ligands, forming a chain structure (Fig. 2). Furthermore, the O—H···O hydrogen bonds (Table 2) link the chains together, forming a three-dimensional supramolecular network.

Related literature top

For related literature, see: Chen & Liu (2002); Che et al. (2006).

Experimental top

A mixture of ZnCl2.2H2O (0.5 mmol), 1,4-H2dbb (0.5 mmol), ibi (0.5 mmol), and H2O (500 mmol) was adjusted to pH = 6.5 by addition of aqueous NaOH solution, and heated at 448 K for three days. After the mixture was slowly cooled to room temperature, colourless blocks of (I) resulted.

Refinement top

All C-bound H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier). The water H-atoms were located in a difference Fourier map, and were freely refined.

Structure description top

As part of the ongoing effort to create new coordinatiom polymer chain structures (Chen & Liu, 2002; Che et al., 2006), we selected 1,4-benzenedioxydiacetic acid (1,4-H2bdd) and 1-(4-(1H-imidazole-l-yl)butyl)-1H-imidazole (ibi) as bridging ligands, in combination with zinc cations, generating a new chain coordination polymer, [Zn2(1,4-bdd)2(ibi)(H2O)2].2H2O, (I), which is reported here.

The selected bond lengths and angles are listed in Table 1. In compound (I), the ZnII atom is six-coordinated by one N atom from one ibi ligand, and five O atoms from two different 1,4-bdd ligands and one water molecule in a very distorted octahedral environment (Fig. 1). As shown in Fig. 2, two 1,4-bdd ligands bridge two ZnII atoms to form a dimer. The dimers are further linked by ibi ligands, forming a chain structure (Fig. 2). Furthermore, the O—H···O hydrogen bonds (Table 2) link the chains together, forming a three-dimensional supramolecular network.

For related literature, see: Chen & Liu (2002); Che et al. (2006).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: SHELXTL (Bruker, 1998).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing displacement ellipsoids drawn at the 30% probability level. (H atoms have been omitted). Symmetry codes: (i) -x, -y, 2 - z; (ii) 1 - x, -y, 1 - z.
[Figure 2] Fig. 2. View of the chain structure of (I).
catena-Poly[[[aquazinc(II)]-bis[µ-(p-phenylenedioxy)diacetato]-zinc(II)- µ-1,4-bis(1H-imidazol-l-yl)butane] dihydrate] top
Crystal data top
[Zn2(C10H8O6)2(C10H14N4)(H2O)2]·2H2OZ = 2
Mr = 420.69F(000) = 434
Triclinic, P1Dx = 1.653 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9061 (12) ÅCell parameters from 3252 reflections
b = 9.8617 (14) Åθ = 2.0–26.0°
c = 10.6066 (15) ŵ = 1.50 mm1
α = 100.014 (2)°T = 293 K
β = 94.614 (2)°Block, colorless
γ = 111.107 (2)°0.19 × 0.19 × 0.18 mm
V = 845.4 (2) Å3
Data collection top
Bruker APEX CCD
diffractometer
3252 independent reflections
Radiation source: fine-focus sealed tube2667 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 810
Tmin = 0.745, Tmax = 0.764k = 1112
4802 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: difmap and geom
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.4041P]
where P = (Fo2 + 2Fc2)/3
3252 reflections(Δ/σ)max = 0.001
247 parametersΔρmax = 0.61 e Å3
7 restraintsΔρmin = 0.34 e Å3
Crystal data top
[Zn2(C10H8O6)2(C10H14N4)(H2O)2]·2H2Oγ = 111.107 (2)°
Mr = 420.69V = 845.4 (2) Å3
Triclinic, P1Z = 2
a = 8.9061 (12) ÅMo Kα radiation
b = 9.8617 (14) ŵ = 1.50 mm1
c = 10.6066 (15) ÅT = 293 K
α = 100.014 (2)°0.19 × 0.19 × 0.18 mm
β = 94.614 (2)°
Data collection top
Bruker APEX CCD
diffractometer
3252 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2667 reflections with I > 2σ(I)
Tmin = 0.745, Tmax = 0.764Rint = 0.027
4802 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0507 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.61 e Å3
3252 reflectionsΔρmin = 0.34 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2172 (5)0.6757 (4)0.8133 (4)0.0243 (9)
C20.2508 (5)0.6119 (4)0.9271 (4)0.0283 (9)
H2A0.35120.68090.98190.034*
H2B0.16310.59850.97830.034*
C30.2504 (4)0.3788 (4)0.9701 (3)0.0219 (8)
C40.1930 (5)0.3990 (4)1.0865 (3)0.0239 (9)
H40.17100.48351.11530.029*
C50.1686 (5)0.2912 (4)1.1597 (4)0.0235 (8)
H50.12910.30351.23760.028*
C60.2024 (5)0.1649 (4)1.1181 (3)0.0225 (8)
C70.2670 (5)0.1497 (4)1.0044 (4)0.0260 (9)
H70.29490.06820.97770.031*
C80.2900 (5)0.2567 (4)0.9304 (4)0.0257 (9)
H80.33230.24600.85370.031*
C90.1705 (5)0.0791 (4)1.1446 (4)0.0252 (9)
H9A0.28250.07121.14690.030*
H9B0.11730.11401.05510.030*
C100.4694 (5)0.4290 (5)0.6597 (4)0.0338 (10)
H100.50530.50920.73050.041*
C110.5664 (5)0.3722 (5)0.5957 (4)0.0349 (10)
H110.67920.40490.61400.042*
C120.3132 (5)0.2476 (4)0.5073 (4)0.0274 (9)
H120.22100.17770.45220.033*
C130.5125 (5)0.1560 (4)0.4063 (4)0.0308 (10)
H13A0.62990.19730.40990.037*
H13B0.46300.14870.31920.037*
C140.4608 (5)0.0011 (4)0.4346 (4)0.0299 (9)
H14A0.34340.03990.43030.036*
H14B0.48860.06250.36790.036*
C150.0841 (5)0.1884 (4)1.2237 (4)0.0278 (9)
N10.3108 (4)0.3507 (3)0.6041 (3)0.0252 (7)
N20.4651 (4)0.2568 (4)0.4986 (3)0.0271 (8)
O10.1532 (3)0.5861 (3)0.7026 (2)0.0276 (6)
O20.2463 (4)0.8100 (3)0.8349 (3)0.0329 (7)
O1W0.0434 (4)0.3118 (3)0.4941 (3)0.0366 (7)
O30.2645 (3)0.4722 (3)0.8831 (2)0.0249 (6)
O2W0.1611 (4)0.0431 (3)0.3437 (3)0.0366 (7)
O40.1672 (3)0.0630 (3)1.1958 (2)0.0271 (6)
O50.0000 (3)0.1547 (3)1.3035 (3)0.0333 (7)
O60.0941 (4)0.3126 (3)1.2033 (3)0.0379 (7)
Zn10.10926 (6)0.37051 (5)0.66421 (4)0.02388 (15)
HW220.096 (4)0.004 (5)0.324 (3)0.036*
HW110.062 (5)0.351 (4)0.437 (3)0.036*
HW120.047 (5)0.230 (2)0.476 (3)0.036*
HW210.199 (4)0.060 (4)0.273 (2)0.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.027 (2)0.023 (2)0.028 (2)0.0116 (17)0.0094 (17)0.0114 (17)
C20.041 (3)0.020 (2)0.026 (2)0.0142 (19)0.0033 (19)0.0082 (17)
C30.022 (2)0.022 (2)0.0196 (19)0.0063 (16)0.0022 (16)0.0060 (15)
C40.029 (2)0.0182 (19)0.026 (2)0.0116 (17)0.0010 (17)0.0054 (16)
C50.026 (2)0.023 (2)0.0182 (19)0.0062 (17)0.0024 (16)0.0037 (16)
C60.024 (2)0.0195 (19)0.0220 (19)0.0052 (16)0.0001 (16)0.0074 (16)
C70.035 (2)0.021 (2)0.025 (2)0.0141 (18)0.0036 (18)0.0048 (16)
C80.029 (2)0.024 (2)0.025 (2)0.0105 (18)0.0057 (17)0.0056 (17)
C90.031 (2)0.019 (2)0.026 (2)0.0103 (17)0.0023 (17)0.0066 (16)
C100.029 (2)0.033 (2)0.030 (2)0.004 (2)0.0019 (19)0.0000 (19)
C110.020 (2)0.035 (2)0.038 (3)0.0015 (19)0.0010 (19)0.000 (2)
C120.025 (2)0.024 (2)0.028 (2)0.0057 (18)0.0022 (18)0.0039 (17)
C130.026 (2)0.036 (2)0.030 (2)0.0119 (19)0.0072 (19)0.0049 (19)
C140.025 (2)0.030 (2)0.033 (2)0.0119 (19)0.0037 (18)0.0003 (19)
C150.027 (2)0.027 (2)0.023 (2)0.0045 (18)0.0080 (18)0.0062 (17)
N10.0223 (19)0.0219 (17)0.0276 (18)0.0042 (14)0.0014 (15)0.0066 (14)
N20.0255 (19)0.0277 (18)0.0302 (18)0.0115 (15)0.0054 (15)0.0085 (15)
O10.0394 (17)0.0201 (14)0.0247 (14)0.0135 (13)0.0002 (13)0.0059 (12)
O20.0494 (19)0.0215 (15)0.0299 (15)0.0157 (14)0.0034 (14)0.0076 (12)
O1W0.050 (2)0.0254 (16)0.0323 (17)0.0146 (15)0.0113 (15)0.0101 (13)
O30.0352 (16)0.0227 (14)0.0213 (14)0.0146 (13)0.0040 (12)0.0082 (11)
O2W0.049 (2)0.0356 (18)0.0308 (16)0.0239 (15)0.0037 (15)0.0070 (14)
O40.0420 (18)0.0209 (14)0.0210 (14)0.0127 (13)0.0065 (12)0.0084 (11)
O50.0312 (17)0.0387 (17)0.0392 (17)0.0166 (14)0.0096 (14)0.0229 (14)
O60.057 (2)0.0206 (15)0.0327 (16)0.0112 (14)0.0009 (15)0.0096 (13)
Zn10.0267 (3)0.0210 (2)0.0249 (3)0.00896 (19)0.00287 (19)0.00807 (18)
Geometric parameters (Å, º) top
C1—O21.230 (4)C11—N21.368 (5)
C1—O11.285 (5)C11—H110.9300
C1—C21.511 (5)C12—N11.321 (5)
C2—O31.427 (4)C12—N21.335 (5)
C2—H2A0.9700C12—H120.9300
C2—H2B0.9700C13—N21.469 (5)
C3—C81.380 (5)C13—C141.520 (5)
C3—C41.384 (5)C13—H13A0.9700
C3—O31.396 (4)C13—H13B0.9700
C4—C51.388 (5)C14—C14i1.510 (8)
C4—H40.9300C14—H14A0.9700
C5—C61.391 (5)C14—H14B0.9700
C5—H50.9300C15—O61.244 (5)
C6—O41.375 (4)C15—O51.253 (5)
C6—C71.385 (5)Zn1—N12.014 (3)
C7—C81.388 (5)Zn1—O11.978 (2)
C7—H70.9300Zn1—O1W2.029 (3)
C8—H80.9300Zn1—O32.446 (3)
C9—O41.423 (4)Zn1—O5ii2.099 (3)
C9—C151.510 (5)Zn1—O6ii2.351 (3)
C9—H9A0.9700O1W—HW110.81 (4)
C9—H9B0.9700O1W—HW120.782 (17)
C10—C111.354 (6)O2W—HW220.83 (4)
C10—N11.364 (5)O2W—HW210.866 (17)
C10—H100.9300
O2—C1—O1124.4 (4)N2—C13—H13B109.2
O2—C1—C2117.1 (3)C14—C13—H13B109.2
O1—C1—C2118.5 (3)H13A—C13—H13B107.9
O3—C2—C1110.4 (3)C14i—C14—C13113.5 (4)
O3—C2—H2A109.6C14i—C14—H14A108.9
C1—C2—H2A109.6C13—C14—H14A108.9
O3—C2—H2B109.6C14i—C14—H14B108.9
C1—C2—H2B109.6C13—C14—H14B108.9
H2A—C2—H2B108.1H14A—C14—H14B107.7
C8—C3—C4120.4 (3)O6—C15—O5121.9 (4)
C8—C3—O3115.7 (3)O6—C15—C9118.1 (4)
C4—C3—O3123.8 (3)O5—C15—C9119.9 (3)
C3—C4—C5119.0 (3)C12—N1—C10105.8 (3)
C3—C4—H4120.5C12—N1—Zn1125.7 (3)
C5—C4—H4120.5C10—N1—Zn1128.3 (3)
C4—C5—C6121.0 (3)C12—N2—C11107.3 (3)
C4—C5—H5119.5C12—N2—C13126.0 (3)
C6—C5—H5119.5C11—N2—C13126.7 (3)
O4—C6—C7124.9 (3)C1—O1—Zn1125.2 (2)
O4—C6—C5115.8 (3)Zn1—O1W—HW11138 (3)
C7—C6—C5119.3 (3)Zn1—O1W—HW1296 (2)
C6—C7—C8119.8 (3)HW11—O1W—HW12119 (3)
C6—C7—H7120.1C3—O3—C2118.0 (3)
C8—C7—H7120.1C3—O3—Zn1119.5 (2)
C3—C8—C7120.5 (3)C2—O3—Zn1106.5 (2)
C3—C8—H8119.8HW22—O2W—HW21106 (3)
C7—C8—H8119.8C6—O4—C9117.2 (3)
O4—C9—C15109.6 (3)C15—O5—Zn1ii95.1 (2)
O4—C9—H9A109.7C15—O6—Zn1ii83.9 (2)
C15—C9—H9A109.7O1—Zn1—N1106.17 (12)
O4—C9—H9B109.7O1—Zn1—O1W98.11 (11)
C15—C9—H9B109.7N1—Zn1—O1W101.77 (13)
H9A—C9—H9B108.2O1—Zn1—O5ii152.24 (11)
C11—C10—N1109.5 (4)N1—Zn1—O5ii97.67 (12)
C11—C10—H10125.2O1W—Zn1—O5ii90.59 (12)
N1—C10—H10125.2O1—Zn1—O6ii94.26 (10)
C10—C11—N2106.2 (4)N1—Zn1—O6ii150.08 (11)
C10—C11—H11126.9O1W—Zn1—O6ii96.58 (12)
N2—C11—H11126.9O5ii—Zn1—O6ii58.43 (10)
N1—C12—N2111.2 (3)O1—Zn1—O373.53 (9)
N1—C12—H12124.4N1—Zn1—O387.89 (11)
N2—C12—H12124.4O1W—Zn1—O3168.82 (10)
N2—C13—C14112.2 (3)O5ii—Zn1—O393.70 (10)
N2—C13—H13A109.2O6ii—Zn1—O377.02 (9)
C14—C13—H13A109.2
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—HW22···O5iii0.83 (4)2.03 (2)2.805 (4)158 (4)
O1W—HW11···O1iv0.81 (4)1.93 (2)2.727 (4)168 (4)
O1W—HW12···O2W0.78 (2)1.98 (2)2.632 (4)140 (3)
O2W—HW21···O2iv0.87 (2)1.99 (2)2.790 (4)153 (3)
Symmetry codes: (iii) x, y, z1; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn2(C10H8O6)2(C10H14N4)(H2O)2]·2H2O
Mr420.69
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.9061 (12), 9.8617 (14), 10.6066 (15)
α, β, γ (°)100.014 (2), 94.614 (2), 111.107 (2)
V3)845.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.50
Crystal size (mm)0.19 × 0.19 × 0.18
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.745, 0.764
No. of measured, independent and
observed [I > 2σ(I)] reflections
4802, 3252, 2667
Rint0.027
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.107, 1.07
No. of reflections3252
No. of parameters247
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.34

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998).

Selected bond lengths (Å) top
Zn1—N12.014 (3)Zn1—O32.446 (3)
Zn1—O11.978 (2)Zn1—O5i2.099 (3)
Zn1—O1W2.029 (3)Zn1—O6i2.351 (3)
Symmetry code: (i) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2W—HW22···O5ii0.83 (4)2.03 (2)2.805 (4)158 (4)
O1W—HW11···O1iii0.81 (4)1.93 (2)2.727 (4)168 (4)
O1W—HW12···O2W0.782 (17)1.98 (2)2.632 (4)140 (3)
O2W—HW21···O2iii0.866 (17)1.99 (2)2.790 (4)153 (3)
Symmetry codes: (ii) x, y, z1; (iii) x, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds