Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C26H24ClN3O5S·C2H3N, the o-vanillin group makes dihedral angles of 25.87 (4), 11.93 (3) and 72.05 (7)° with the pyrazolone, benzene and phenyl rings, respectively. The crystal structure is stabilized by weak inter­molecular C—H...O inter­actions that link mol­ecules into centrosymmetric dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807051021/hb2589sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807051021/hb2589Isup2.hkl
Contains datablock I

CCDC reference: 667416

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.044
  • wR factor = 0.133
  • Data-to-parameter ratio = 13.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 200 Deg. PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C28
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 19
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Schiff-base ligands have received a good deal of attention in biology and chemistry (Kahwa et al., 1986) in areas such as protein and enzyme mimics (Santos et al., 2001). Among the large number of compounds, 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one forms a variety of Schiff bases with aldehydes, and the synthesis and crystal structures of some of them, such as (E)-4-[(1,5-Dimethyl-3-oxo-2-phenyl-2,3- dihydro-1H-pyrazol-4-ylimino)methyl]-phenyl 4-chlorobenzoate (Han et al., 2007) and (E)-4-[4-(4-Chlorobenzyloxy)benzylideneamino]-1,5- dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (Hu, 2006) have been reported. We now report the synthesis and molecular structure of the title Schiff base compound, (I), (Fig. 1)

The bond lengths and angles of (I) are within normal ranges (Allen et al., 1987). The pyrazolone ring (C16—C18/N1/N2/N3/O5) is nearly planar, with an r.m.s. deviation for fitted atoms of 0.030 Å. It makes a dihedral angle of 54.45 (9)° with the attached phenyl ring (C21—C26). The o-vanillin group (C8—C13/C15/O3/O4) is almost planar, with an r.m.s. deviation for fitted atoms of 0.020 Å. This group makes dihedral angles of 25.87 (4)°, 11.93 (3)° and 72.05 (7)°, with the the pyrazolone ring (C16—C18/N1/N2/N3/O5), the terminal C1—C6 benzene ring and the terminal C21—C26 phenyl ring, respectively.

The crystal packing is stabilized by weak intermolecular C10—H10···O2S1 interaction (Table 1, Fig. 2) that form inversion dimers.

Related literature top

For related structures, see: Han et al. (2007); Hu (2006). For general background, see: Kahwa et al. (1986); Santos et al. (2001). For reference structural data, see: Allen et al. (1987).

Experimental top

An anhydrous ethanol solution (50 ml) of 4-chloro-2-formyl-6-methoxyphenyl 4-methylbenzenesulfonate (3.41 g, 10 mmol) was added to an anhydrous ethanol solution (50 ml) of 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one (2.03 g, 10 mmol) and the mixture stirred at 350 K for 3 h under N2, giving a yellow precipitate. The product was isolated, recrystallized from acetonitrile, and then dried in a vacuum to give pure compound (I) in 85% yield. Yellow blocks of (I) suitable for X-ray analysis were obtained by slow evaporation of an acetonitrile solution.

Refinement top

The H atoms were included in calculated positions (C—H = 0.93–0.96 Å) and refined as riding Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Schiff-base ligands have received a good deal of attention in biology and chemistry (Kahwa et al., 1986) in areas such as protein and enzyme mimics (Santos et al., 2001). Among the large number of compounds, 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one forms a variety of Schiff bases with aldehydes, and the synthesis and crystal structures of some of them, such as (E)-4-[(1,5-Dimethyl-3-oxo-2-phenyl-2,3- dihydro-1H-pyrazol-4-ylimino)methyl]-phenyl 4-chlorobenzoate (Han et al., 2007) and (E)-4-[4-(4-Chlorobenzyloxy)benzylideneamino]-1,5- dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (Hu, 2006) have been reported. We now report the synthesis and molecular structure of the title Schiff base compound, (I), (Fig. 1)

The bond lengths and angles of (I) are within normal ranges (Allen et al., 1987). The pyrazolone ring (C16—C18/N1/N2/N3/O5) is nearly planar, with an r.m.s. deviation for fitted atoms of 0.030 Å. It makes a dihedral angle of 54.45 (9)° with the attached phenyl ring (C21—C26). The o-vanillin group (C8—C13/C15/O3/O4) is almost planar, with an r.m.s. deviation for fitted atoms of 0.020 Å. This group makes dihedral angles of 25.87 (4)°, 11.93 (3)° and 72.05 (7)°, with the the pyrazolone ring (C16—C18/N1/N2/N3/O5), the terminal C1—C6 benzene ring and the terminal C21—C26 phenyl ring, respectively.

The crystal packing is stabilized by weak intermolecular C10—H10···O2S1 interaction (Table 1, Fig. 2) that form inversion dimers.

For related structures, see: Han et al. (2007); Hu (2006). For general background, see: Kahwa et al. (1986); Santos et al. (2001). For reference structural data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The structure of (I), with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. A packing diagram for (I), with hydrogen bonds drawn as dashed lines.
(E)-4-Chloro-2-[(2,3-dimethyl-5-oxo-1-phenyl-2,5-dihydro-1H-pyrazol-4-yl)iminomethyl]-6-methoxyphenyl 4-methylbenzenesulfonate acetonitrile solvate top
Crystal data top
C26H24ClN3O5S·C2H3NZ = 2
Mr = 567.06F(000) = 592
Triclinic, P1Dx = 1.349 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3242 (9) ÅCell parameters from 4430 reflections
b = 13.2452 (17) Åθ = 2.8–26.4°
c = 15.3145 (19) ŵ = 0.26 mm1
α = 108.731 (2)°T = 294 K
β = 93.303 (2)°Block, yellow
γ = 94.910 (2)°0.24 × 0.22 × 0.18 mm
V = 1396.1 (3) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
4893 independent reflections
Radiation source: fine-focus sealed tube4057 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
φ and ω scansθmax = 25.0°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.923, Tmax = 0.955k = 1513
7152 measured reflectionsl = 1814
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.133 w = 1/[σ2(Fo2) + (0.0722P)2 + 0.7683P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
4893 reflectionsΔρmax = 0.72 e Å3
358 parametersΔρmin = 0.47 e Å3
19 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0160 (19)
Crystal data top
C26H24ClN3O5S·C2H3Nγ = 94.910 (2)°
Mr = 567.06V = 1396.1 (3) Å3
Triclinic, P1Z = 2
a = 7.3242 (9) ÅMo Kα radiation
b = 13.2452 (17) ŵ = 0.26 mm1
c = 15.3145 (19) ÅT = 294 K
α = 108.731 (2)°0.24 × 0.22 × 0.18 mm
β = 93.303 (2)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4893 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4057 reflections with I > 2σ(I)
Tmin = 0.923, Tmax = 0.955Rint = 0.016
7152 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04419 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.02Δρmax = 0.72 e Å3
4893 reflectionsΔρmin = 0.47 e Å3
358 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.62434 (8)0.24085 (4)0.38970 (4)0.03804 (18)
Cl10.72326 (14)0.28513 (6)0.33595 (5)0.0783 (3)
O10.6098 (2)0.25614 (14)0.30172 (11)0.0514 (4)
O20.4724 (2)0.18514 (14)0.41509 (12)0.0509 (4)
O30.8015 (2)0.17747 (11)0.39394 (10)0.0372 (4)
O40.7707 (2)0.11000 (14)0.53785 (10)0.0505 (4)
O50.9284 (2)0.18328 (12)0.11286 (10)0.0453 (4)
N10.7377 (2)0.03192 (14)0.12557 (11)0.0326 (4)
N20.8337 (2)0.09923 (14)0.04314 (11)0.0352 (4)
N30.7241 (2)0.00446 (14)0.09482 (11)0.0346 (4)
C10.6988 (3)0.36377 (18)0.47552 (15)0.0405 (5)
C20.7231 (5)0.3682 (2)0.56658 (18)0.0637 (8)
H20.70620.30620.58270.076*
C30.7733 (5)0.4671 (2)0.63347 (19)0.0702 (8)
H30.79000.47110.69520.084*
C40.7994 (3)0.5602 (2)0.61129 (19)0.0533 (6)
C50.7738 (4)0.5527 (2)0.52022 (19)0.0559 (7)
H50.79010.61470.50420.067*
C60.7242 (4)0.45531 (19)0.45123 (17)0.0494 (6)
H60.70820.45160.38960.059*
C70.8544 (4)0.6671 (2)0.6855 (2)0.0747 (9)
H7A0.98480.67580.70130.112*
H7B0.79150.66990.73940.112*
H7C0.82180.72360.66310.112*
C80.7729 (3)0.06603 (17)0.37770 (14)0.0342 (5)
C90.7623 (3)0.03145 (18)0.45460 (14)0.0386 (5)
C100.7456 (3)0.07720 (19)0.44131 (15)0.0438 (5)
H100.73820.10230.49130.053*
C110.7400 (3)0.14827 (18)0.35172 (16)0.0445 (5)
C120.7497 (3)0.11512 (18)0.27572 (15)0.0392 (5)
H120.74570.16520.21680.047*
C130.7657 (3)0.00529 (17)0.28775 (14)0.0338 (5)
C140.7599 (4)0.0782 (2)0.61864 (16)0.0544 (6)
H14A0.64510.03520.61390.082*
H14B0.76780.14080.67270.082*
H14C0.85970.03720.62340.082*
C150.7817 (3)0.03317 (17)0.20836 (13)0.0332 (4)
H150.82350.10450.21790.040*
C160.7603 (3)0.00425 (16)0.05086 (13)0.0306 (4)
C170.8511 (3)0.10494 (17)0.04996 (13)0.0329 (4)
C180.6926 (3)0.05439 (16)0.03873 (13)0.0318 (4)
C190.6029 (3)0.16592 (17)0.07583 (15)0.0410 (5)
H19A0.49630.16900.11650.062*
H19B0.56650.18930.02560.062*
H19C0.68770.21190.10950.062*
C200.7379 (3)0.0387 (2)0.19409 (14)0.0458 (6)
H20A0.85400.06700.20520.069*
H20B0.72920.01730.22080.069*
H20C0.63980.09500.22170.069*
C210.8404 (3)0.19099 (17)0.07269 (14)0.0365 (5)
C220.6866 (3)0.2147 (2)0.11566 (17)0.0474 (6)
H220.57720.16950.12790.057*
C230.6975 (4)0.3068 (2)0.1402 (2)0.0638 (8)
H230.59530.32290.17010.077*
C240.8578 (5)0.3746 (2)0.1208 (2)0.0693 (8)
H240.86340.43700.13650.083*
C251.0115 (4)0.3500 (2)0.0779 (2)0.0651 (8)
H251.12010.39610.06480.078*
C261.0043 (3)0.2575 (2)0.05454 (18)0.0499 (6)
H261.10810.24010.02700.060*
C270.7594 (6)0.4169 (3)0.1580 (3)0.1074 (14)
H27A0.82690.48240.19790.161*
H27B0.81100.39520.09950.161*
H27C0.76660.36190.18610.161*
C280.5735 (7)0.4333 (3)0.1443 (4)0.128 (2)
N40.4221 (10)0.4429 (5)0.1437 (5)0.186 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0442 (3)0.0362 (3)0.0308 (3)0.0002 (2)0.0012 (2)0.0088 (2)
Cl10.1364 (8)0.0419 (4)0.0635 (5)0.0086 (4)0.0092 (4)0.0272 (3)
O10.0684 (11)0.0506 (10)0.0334 (9)0.0052 (8)0.0071 (7)0.0135 (7)
O20.0449 (9)0.0478 (10)0.0571 (10)0.0033 (7)0.0066 (8)0.0148 (8)
O30.0424 (8)0.0357 (8)0.0318 (8)0.0017 (6)0.0012 (6)0.0105 (6)
O40.0740 (12)0.0533 (10)0.0236 (8)0.0054 (8)0.0044 (7)0.0124 (7)
O50.0603 (10)0.0392 (9)0.0311 (8)0.0092 (7)0.0047 (7)0.0095 (7)
N10.0352 (9)0.0366 (9)0.0270 (9)0.0047 (7)0.0025 (7)0.0117 (7)
N20.0425 (10)0.0353 (9)0.0273 (9)0.0016 (7)0.0020 (7)0.0120 (7)
N30.0436 (10)0.0360 (9)0.0228 (8)0.0016 (8)0.0008 (7)0.0089 (7)
C10.0443 (12)0.0382 (12)0.0340 (11)0.0014 (9)0.0008 (9)0.0063 (9)
C20.102 (2)0.0456 (15)0.0395 (14)0.0013 (14)0.0023 (14)0.0125 (12)
C30.103 (2)0.0603 (18)0.0353 (14)0.0017 (16)0.0083 (14)0.0029 (12)
C40.0465 (14)0.0434 (14)0.0578 (16)0.0052 (11)0.0011 (11)0.0004 (12)
C50.0641 (17)0.0380 (13)0.0615 (17)0.0027 (11)0.0072 (13)0.0111 (12)
C60.0612 (15)0.0435 (13)0.0434 (13)0.0041 (11)0.0049 (11)0.0143 (11)
C70.074 (2)0.0527 (17)0.073 (2)0.0020 (14)0.0036 (16)0.0105 (15)
C80.0371 (11)0.0353 (11)0.0302 (11)0.0017 (9)0.0008 (8)0.0120 (9)
C90.0413 (12)0.0490 (13)0.0263 (11)0.0025 (10)0.0012 (9)0.0143 (9)
C100.0525 (14)0.0520 (14)0.0342 (12)0.0054 (11)0.0042 (10)0.0241 (10)
C110.0557 (14)0.0384 (12)0.0433 (13)0.0037 (10)0.0033 (10)0.0194 (10)
C120.0489 (13)0.0366 (11)0.0314 (11)0.0047 (9)0.0015 (9)0.0105 (9)
C130.0341 (10)0.0404 (11)0.0272 (10)0.0011 (9)0.0011 (8)0.0125 (9)
C140.0636 (16)0.0758 (18)0.0277 (12)0.0086 (13)0.0048 (10)0.0221 (12)
C150.0365 (11)0.0351 (11)0.0287 (10)0.0033 (8)0.0033 (8)0.0115 (9)
C160.0350 (10)0.0319 (10)0.0252 (10)0.0048 (8)0.0025 (8)0.0095 (8)
C170.0360 (11)0.0367 (11)0.0261 (10)0.0040 (9)0.0024 (8)0.0105 (9)
C180.0333 (10)0.0340 (11)0.0282 (10)0.0062 (8)0.0041 (8)0.0096 (8)
C190.0499 (13)0.0365 (12)0.0325 (11)0.0012 (10)0.0010 (9)0.0079 (9)
C200.0576 (14)0.0519 (14)0.0235 (11)0.0006 (11)0.0042 (9)0.0080 (10)
C210.0460 (12)0.0376 (11)0.0284 (10)0.0045 (9)0.0054 (9)0.0137 (9)
C220.0497 (13)0.0488 (14)0.0466 (14)0.0025 (11)0.0028 (10)0.0214 (11)
C230.0738 (19)0.0610 (17)0.0662 (18)0.0118 (14)0.0092 (14)0.0357 (15)
C240.088 (2)0.0541 (17)0.080 (2)0.0037 (15)0.0027 (17)0.0433 (16)
C250.0662 (18)0.0571 (17)0.080 (2)0.0095 (14)0.0029 (15)0.0378 (15)
C260.0478 (14)0.0514 (14)0.0552 (15)0.0004 (11)0.0029 (11)0.0256 (12)
C270.116 (4)0.075 (3)0.134 (4)0.009 (2)0.029 (3)0.036 (3)
C280.123 (4)0.046 (2)0.217 (6)0.015 (2)0.049 (4)0.038 (3)
N40.185 (3)0.183 (3)0.190 (3)0.0223 (11)0.0167 (10)0.0609 (12)
Geometric parameters (Å, º) top
S1—O21.4240 (17)C10—H100.9300
S1—O11.4247 (17)C11—C121.373 (3)
S1—O31.6139 (16)C12—C131.400 (3)
S1—C11.751 (2)C12—H120.9300
Cl1—C111.743 (2)C13—C151.468 (3)
O3—C81.411 (2)C14—H14A0.9600
O4—C91.356 (3)C14—H14B0.9600
O4—C141.434 (3)C14—H14C0.9600
O5—C171.233 (2)C15—H150.9300
N1—C151.288 (3)C16—C181.380 (3)
N1—C161.388 (3)C16—C171.443 (3)
N2—C171.401 (3)C18—C191.479 (3)
N2—N31.401 (2)C19—H19A0.9600
N2—C211.425 (3)C19—H19B0.9600
N3—C181.349 (3)C19—H19C0.9600
N3—C201.455 (3)C20—H20A0.9600
C1—C21.377 (3)C20—H20B0.9600
C1—C61.379 (3)C20—H20C0.9600
C2—C31.384 (4)C21—C221.381 (3)
C2—H20.9300C21—C261.385 (3)
C3—C41.381 (4)C22—C231.385 (4)
C3—H30.9300C22—H220.9300
C4—C51.367 (4)C23—C241.372 (4)
C4—C71.509 (4)C23—H230.9300
C5—C61.383 (3)C24—C251.386 (4)
C5—H50.9300C24—H240.9300
C6—H60.9300C25—C261.380 (4)
C7—H7A0.9600C25—H250.9300
C7—H7B0.9600C26—H260.9300
C7—H7C0.9600C27—C281.411 (6)
C8—C131.393 (3)C27—H27A0.9600
C8—C91.398 (3)C27—H27B0.9600
C9—C101.381 (3)C27—H27C0.9600
C10—C111.388 (3)C28—N41.126 (7)
O2—S1—O1118.58 (11)C12—C13—C15120.92 (19)
O2—S1—O3107.79 (9)O4—C14—H14A109.5
O1—S1—O3107.52 (9)O4—C14—H14B109.5
O2—S1—C1111.84 (11)H14A—C14—H14B109.5
O1—S1—C1109.30 (11)O4—C14—H14C109.5
O3—S1—C1100.09 (9)H14A—C14—H14C109.5
C8—O3—S1118.42 (12)H14B—C14—H14C109.5
C9—O4—C14117.70 (19)N1—C15—C13119.96 (19)
C15—N1—C16119.45 (18)N1—C15—H15120.0
C17—N2—N3109.06 (16)C13—C15—H15120.0
C17—N2—C21123.68 (17)C18—C16—N1123.36 (18)
N3—N2—C21120.39 (16)C18—C16—C17107.84 (17)
C18—N3—N2107.95 (15)N1—C16—C17128.80 (17)
C18—N3—C20125.35 (18)O5—C17—N2123.64 (19)
N2—N3—C20118.97 (17)O5—C17—C16131.51 (19)
C2—C1—C6121.1 (2)N2—C17—C16104.84 (16)
C2—C1—S1119.46 (19)N3—C18—C16109.78 (18)
C6—C1—S1119.36 (18)N3—C18—C19121.14 (18)
C1—C2—C3118.3 (3)C16—C18—C19129.05 (19)
C1—C2—H2120.9C18—C19—H19A109.5
C3—C2—H2120.9C18—C19—H19B109.5
C4—C3—C2122.0 (3)H19A—C19—H19B109.5
C4—C3—H3119.0C18—C19—H19C109.5
C2—C3—H3119.0H19A—C19—H19C109.5
C5—C4—C3118.1 (2)H19B—C19—H19C109.5
C5—C4—C7121.0 (3)N3—C20—H20A109.5
C3—C4—C7120.9 (3)N3—C20—H20B109.5
C4—C5—C6121.7 (3)H20A—C20—H20B109.5
C4—C5—H5119.1N3—C20—H20C109.5
C6—C5—H5119.1H20A—C20—H20C109.5
C1—C6—C5118.8 (2)H20B—C20—H20C109.5
C1—C6—H6120.6C22—C21—C26120.9 (2)
C5—C6—H6120.6C22—C21—N2121.1 (2)
C4—C7—H7A109.5C26—C21—N2117.9 (2)
C4—C7—H7B109.5C21—C22—C23119.1 (2)
H7A—C7—H7B109.5C21—C22—H22120.4
C4—C7—H7C109.5C23—C22—H22120.4
H7A—C7—H7C109.5C24—C23—C22120.5 (3)
H7B—C7—H7C109.5C24—C23—H23119.7
C13—C8—C9122.4 (2)C22—C23—H23119.7
C13—C8—O3119.87 (18)C23—C24—C25119.9 (3)
C9—C8—O3117.69 (18)C23—C24—H24120.0
O4—C9—C10125.18 (19)C25—C24—H24120.0
O4—C9—C8115.8 (2)C26—C25—C24120.3 (3)
C10—C9—C8119.0 (2)C26—C25—H25119.8
C9—C10—C11118.6 (2)C24—C25—H25119.8
C9—C10—H10120.7C25—C26—C21119.1 (2)
C11—C10—H10120.7C25—C26—H26120.5
C12—C11—C10122.8 (2)C21—C26—H26120.5
C12—C11—Cl1118.97 (18)C28—C27—H27A109.5
C10—C11—Cl1118.23 (18)C28—C27—H27B109.5
C11—C12—C13119.4 (2)H27A—C27—H27B109.5
C11—C12—H12120.3C28—C27—H27C109.5
C13—C12—H12120.3H27A—C27—H27C109.5
C8—C13—C12117.77 (19)H27B—C27—H27C109.5
C8—C13—C15121.27 (19)N4—C28—C27170.8 (7)
O2—S1—O3—C828.54 (16)O3—C8—C13—C12175.72 (18)
O1—S1—O3—C8100.38 (15)C9—C8—C13—C15178.51 (19)
C1—S1—O3—C8145.53 (15)O3—C8—C13—C151.9 (3)
C17—N2—N3—C187.5 (2)C11—C12—C13—C80.6 (3)
C21—N2—N3—C18159.44 (18)C11—C12—C13—C15178.3 (2)
C17—N2—N3—C20158.46 (19)C16—N1—C15—C13177.41 (17)
C21—N2—N3—C2049.6 (3)C8—C13—C15—N1165.84 (19)
O2—S1—C1—C246.8 (2)C12—C13—C15—N116.6 (3)
O1—S1—C1—C2179.9 (2)C15—N1—C16—C18170.18 (19)
O3—S1—C1—C267.1 (2)C15—N1—C16—C178.9 (3)
O2—S1—C1—C6130.3 (2)N3—N2—C17—O5174.35 (19)
O1—S1—C1—C63.0 (2)C21—N2—C17—O523.5 (3)
O3—S1—C1—C6115.8 (2)N3—N2—C17—C165.0 (2)
C6—C1—C2—C30.2 (4)C21—N2—C17—C16155.87 (19)
S1—C1—C2—C3176.9 (2)C18—C16—C17—O5178.4 (2)
C1—C2—C3—C40.1 (5)N1—C16—C17—O50.8 (4)
C2—C3—C4—C50.2 (5)C18—C16—C17—N20.9 (2)
C2—C3—C4—C7179.9 (3)N1—C16—C17—N2179.94 (19)
C3—C4—C5—C60.4 (4)N2—N3—C18—C166.9 (2)
C7—C4—C5—C6179.7 (3)C20—N3—C18—C16155.5 (2)
C2—C1—C6—C50.4 (4)N2—N3—C18—C19171.31 (18)
S1—C1—C6—C5176.7 (2)C20—N3—C18—C1922.7 (3)
C4—C5—C6—C10.5 (4)N1—C16—C18—N3175.48 (18)
S1—O3—C8—C1388.5 (2)C17—C16—C18—N33.7 (2)
S1—O3—C8—C994.75 (19)N1—C16—C18—C196.5 (3)
C14—O4—C9—C100.6 (3)C17—C16—C18—C19174.3 (2)
C14—O4—C9—C8179.9 (2)C17—N2—C21—C22112.6 (2)
C13—C8—C9—O4179.84 (19)N3—N2—C21—C2235.1 (3)
O3—C8—C9—O43.5 (3)C17—N2—C21—C2665.5 (3)
C13—C8—C9—C100.6 (3)N3—N2—C21—C26146.8 (2)
O3—C8—C9—C10176.11 (19)C26—C21—C22—C230.4 (4)
O4—C9—C10—C11179.5 (2)N2—C21—C22—C23177.7 (2)
C8—C9—C10—C110.0 (3)C21—C22—C23—C241.1 (4)
C9—C10—C11—C120.3 (4)C22—C23—C24—C251.2 (5)
C9—C10—C11—Cl1178.83 (18)C23—C24—C25—C260.0 (5)
C10—C11—C12—C130.1 (4)C24—C25—C26—C211.4 (5)
Cl1—C11—C12—C13179.15 (17)C22—C21—C26—C251.6 (4)
C9—C8—C13—C120.9 (3)N2—C21—C26—C25176.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.932.573.386 (3)146
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC26H24ClN3O5S·C2H3N
Mr567.06
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.3242 (9), 13.2452 (17), 15.3145 (19)
α, β, γ (°)108.731 (2), 93.303 (2), 94.910 (2)
V3)1396.1 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.24 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.923, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
7152, 4893, 4057
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.133, 1.02
No. of reflections4893
No. of parameters358
No. of restraints19
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.72, 0.47

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10···O2i0.932.573.386 (3)146
Symmetry code: (i) x+1, y, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds