Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title complex, [Ni(C4H5O2)2(C10H9N3)(H2O)], the Ni atom adopts a square-pyramidal NiO3N2 geometry, with the water mol­ecule at the apical position and N2O2 donors in the basal plane. A network of O—H...O and N—H...O hydrogen bonds helps to establish the packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807049100/hb2571sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807049100/hb2571Isup2.hkl
Contains datablock I

CCDC reference: 669122

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.037
  • wR factor = 0.086
  • Data-to-parameter ratio = 10.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT164_ALERT_4_C Nr. of Refined C-H H-Atoms in Heavy-At Struct... 18 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.51 Ratio PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.36 Ratio PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni1 - O1 .. 5.78 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni1 - N1 .. 5.82 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O3 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for Ni1 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C15 PLAT245_ALERT_2_C U(iso) H21 Smaller than U(eq) O5 by ... 0.02 AngSq PLAT351_ALERT_3_C Long C-H Bond (0.96A) C18 - H18 ... 1.13 Ang.
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (2) 1.94 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 4
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 10 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The molecular title complex, (I), complements related materials (Yang et al., 1997).

As shown in Fig. 1, the Ni(II) ion in (I) is coordinated by two N atoms of one chelating dipyridin-2-ylamine ligand, two O atoms of monodentate crotonictate anions and one O atom of a water molecule, forming a square-pyramidal coordination environment (Table 1). The N atoms occupy sites in the basal plane and the water molecule occupies the apical site.

A network of O—H···O and N—H···O hydrogen bonds helps to stabilize the packing (Table 2).

Related literature top

For background, see: Yang et al. (1997).

Experimental top

Dipyridin-2-ylamine (0.031 g, 0.016 mmol), crotonictic acid (0.028 g, 0.032 mmol), Ni(CH3COO)2 (0.18 g, 0.018 mmol) and NaOH (0.048 g, 0.12 mmol), were added to a mixed solvent of ethanol and acetonitrile. The mixture was heated for five hours under reflux with stirring. The resultant filtrate was infiltrated with diethyl ether in a closed vessel, and green blocks of (I) grew after one week.

Refinement top

The C-bound H atoms were located in difference maps and freely refined. The O– and N-bound H atoms were located in difference maps and refined with O—H = 0.86 (1)Å and N—H = 0.88 (1) Å, respectively.

Structure description top

The molecular title complex, (I), complements related materials (Yang et al., 1997).

As shown in Fig. 1, the Ni(II) ion in (I) is coordinated by two N atoms of one chelating dipyridin-2-ylamine ligand, two O atoms of monodentate crotonictate anions and one O atom of a water molecule, forming a square-pyramidal coordination environment (Table 1). The N atoms occupy sites in the basal plane and the water molecule occupies the apical site.

A network of O—H···O and N—H···O hydrogen bonds helps to stabilize the packing (Table 2).

For background, see: Yang et al. (1997).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2004); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 30% probability displacement ellipsoids (arbitrary spheres for the H atoms).
Aquabis(but-2-enoato-κO)(di-2-pyridylamine-κ2N,N')nickel(II) top
Crystal data top
[Ni(C4H5O2)2(C10H9N3)(H2O)]F(000) = 872
Mr = 418.09Dx = 1.452 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3448 reflections
a = 7.1113 (7) Åθ = 1.8–25.2°
b = 16.8303 (15) ŵ = 1.05 mm1
c = 15.9850 (14) ÅT = 298 K
β = 91.291 (2)°Block, green
V = 1912.7 (3) Å30.28 × 0.20 × 0.17 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
3448 independent reflections
Radiation source: fine-focus sealed tube2714 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
φ and ω scansθmax = 25.2°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 78
Tmin = 0.758, Tmax = 0.842k = 2020
9697 measured reflectionsl = 1719
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: difference Fourier map
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 0.91 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.001P]
where P = (Fo2 + 2Fc2)/3
3448 reflections(Δ/σ)max = 0.001
328 parametersΔρmax = 0.29 e Å3
4 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Ni(C4H5O2)2(C10H9N3)(H2O)]V = 1912.7 (3) Å3
Mr = 418.09Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.1113 (7) ŵ = 1.05 mm1
b = 16.8303 (15) ÅT = 298 K
c = 15.9850 (14) Å0.28 × 0.20 × 0.17 mm
β = 91.291 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
3448 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2714 reflections with I > 2σ(I)
Tmin = 0.758, Tmax = 0.842Rint = 0.064
9697 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0374 restraints
wR(F2) = 0.086H atoms treated by a mixture of independent and constrained refinement
S = 0.91Δρmax = 0.29 e Å3
3448 reflectionsΔρmin = 0.33 e Å3
328 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.19266 (4)0.572833 (16)0.669656 (17)0.04340 (13)
O10.0960 (3)0.68412 (10)0.67000 (11)0.0608 (5)
O20.1803 (3)0.62915 (11)0.64370 (12)0.0671 (5)
O30.0968 (3)0.56323 (11)0.78220 (12)0.0723 (6)
O40.3460 (4)0.59215 (14)0.86344 (14)0.0888 (7)
O50.4813 (4)0.6002 (2)0.71520 (16)0.1188 (10)
N10.2755 (3)0.58874 (10)0.55233 (12)0.0433 (5)
N20.2024 (3)0.45996 (11)0.50416 (12)0.0449 (5)
N30.1835 (3)0.45412 (12)0.65126 (12)0.0468 (5)
C10.3433 (4)0.66180 (14)0.53393 (17)0.0514 (6)
C20.3911 (4)0.68475 (16)0.45623 (17)0.0563 (7)
C30.3701 (4)0.63070 (15)0.39151 (17)0.0560 (7)
C40.3075 (4)0.55611 (15)0.40780 (16)0.0495 (6)
C50.2626 (3)0.53616 (13)0.48997 (14)0.0399 (5)
C60.1751 (3)0.41812 (12)0.57651 (15)0.0427 (6)
C70.1412 (4)0.33687 (14)0.56819 (18)0.0536 (7)
C80.1230 (4)0.29112 (17)0.6374 (2)0.0666 (8)
C90.1385 (5)0.32646 (18)0.7143 (2)0.0741 (9)
C100.1671 (5)0.40643 (17)0.71917 (18)0.0658 (8)
C110.0792 (4)0.68798 (15)0.65862 (15)0.0538 (6)
C120.1703 (5)0.76715 (19)0.6610 (2)0.0725 (9)
C130.0853 (6)0.83326 (18)0.65710 (19)0.0694 (8)
C140.1754 (8)0.9141 (2)0.6553 (3)0.0914 (12)
C150.1761 (5)0.58259 (14)0.85134 (18)0.0604 (8)
C160.0516 (6)0.59262 (17)0.9241 (2)0.0715 (9)
C170.1283 (6)0.59352 (17)0.9198 (2)0.0746 (9)
C180.2552 (8)0.6050 (3)0.9942 (3)0.1003 (13)
H90.195 (3)0.4304 (11)0.4590 (11)0.044 (7)*
H10.356 (3)0.6974 (14)0.5834 (16)0.060 (7)*
H40.292 (4)0.5178 (16)0.3622 (17)0.070 (8)*
H30.398 (4)0.6468 (13)0.3352 (15)0.054 (7)*
H190.161 (5)0.6191 (18)1.047 (2)0.092 (11)*
H60.098 (4)0.2320 (16)0.6302 (15)0.068 (8)*
H20.437 (3)0.7340 (15)0.4474 (15)0.056 (7)*
H50.130 (4)0.3151 (15)0.5107 (16)0.062 (8)*
H150.100 (5)0.6118 (19)0.986 (2)0.104 (11)*
H140.320 (7)0.912 (2)0.663 (3)0.14 (2)*
H180.349 (6)0.658 (2)0.982 (2)0.148 (16)*
H120.149 (6)0.940 (2)0.602 (3)0.133 (16)*
H80.179 (5)0.4376 (17)0.777 (2)0.090 (10)*
H70.138 (4)0.3000 (17)0.7626 (18)0.077 (9)*
H210.5918 (19)0.610 (2)0.6968 (19)0.098 (11)*
H200.467 (6)0.604 (2)0.7683 (4)0.117 (14)*
H100.304 (6)0.774 (3)0.656 (2)0.144 (17)*
H110.051 (6)0.824 (2)0.658 (2)0.125 (15)*
H160.186 (6)0.587 (2)0.864 (3)0.142 (17)*
H170.315 (6)0.560 (2)1.012 (3)0.133 (17)*
H130.120 (5)0.947 (2)0.700 (2)0.113 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0463 (2)0.03944 (18)0.0448 (2)0.00627 (13)0.00914 (14)0.00722 (12)
O10.0586 (12)0.0435 (10)0.0810 (13)0.0096 (9)0.0216 (10)0.0161 (8)
O20.0676 (13)0.0583 (11)0.0758 (13)0.0152 (10)0.0092 (10)0.0227 (9)
O30.0816 (15)0.0798 (14)0.0563 (12)0.0182 (11)0.0211 (11)0.0110 (10)
O40.0887 (18)0.1121 (19)0.0657 (13)0.0090 (15)0.0046 (13)0.0040 (12)
O50.0608 (16)0.232 (3)0.0634 (16)0.0454 (19)0.0058 (13)0.0179 (18)
N10.0430 (12)0.0356 (10)0.0515 (12)0.0028 (8)0.0071 (9)0.0044 (8)
N20.0556 (13)0.0323 (10)0.0469 (12)0.0020 (9)0.0042 (10)0.0058 (9)
N30.0493 (13)0.0411 (10)0.0500 (12)0.0018 (9)0.0034 (10)0.0044 (9)
C10.0549 (16)0.0387 (13)0.0608 (16)0.0069 (12)0.0108 (13)0.0050 (12)
C20.0583 (17)0.0379 (14)0.0734 (19)0.0023 (13)0.0145 (14)0.0062 (13)
C30.0602 (17)0.0517 (16)0.0567 (16)0.0042 (13)0.0138 (14)0.0119 (13)
C40.0556 (16)0.0455 (15)0.0477 (15)0.0031 (12)0.0064 (12)0.0032 (12)
C50.0356 (12)0.0325 (11)0.0518 (14)0.0026 (10)0.0043 (10)0.0008 (10)
C60.0366 (13)0.0358 (12)0.0559 (15)0.0004 (10)0.0039 (11)0.0022 (11)
C70.0565 (17)0.0365 (13)0.0679 (18)0.0009 (12)0.0037 (14)0.0009 (12)
C80.0668 (19)0.0420 (16)0.091 (2)0.0006 (14)0.0043 (16)0.0139 (15)
C90.093 (3)0.0577 (19)0.072 (2)0.0030 (16)0.0045 (18)0.0257 (17)
C100.084 (2)0.0581 (17)0.0552 (17)0.0019 (15)0.0033 (15)0.0114 (14)
C110.0607 (18)0.0491 (15)0.0523 (15)0.0026 (14)0.0159 (13)0.0137 (12)
C120.068 (2)0.0622 (19)0.088 (2)0.0017 (17)0.0144 (18)0.0167 (16)
C130.088 (3)0.0544 (18)0.0661 (19)0.0018 (18)0.0069 (17)0.0039 (14)
C140.127 (4)0.056 (2)0.092 (3)0.021 (2)0.007 (3)0.003 (2)
C150.089 (2)0.0418 (15)0.0513 (17)0.0103 (15)0.0145 (16)0.0011 (12)
C160.098 (3)0.0581 (18)0.0585 (19)0.0079 (18)0.0128 (18)0.0005 (14)
C170.095 (3)0.0511 (17)0.079 (2)0.0052 (18)0.021 (2)0.0035 (15)
C180.117 (4)0.088 (3)0.098 (3)0.006 (3)0.050 (3)0.010 (2)
Geometric parameters (Å, º) top
Ni1—N11.9965 (19)C4—H40.98 (3)
Ni1—N32.020 (2)C6—C71.394 (3)
Ni1—O31.9449 (19)C7—C81.357 (4)
Ni1—O11.9953 (17)C7—H50.99 (3)
Ni1—O52.211 (3)C8—C91.367 (4)
O1—C111.257 (3)C8—H61.02 (3)
O2—C111.243 (3)C9—C101.363 (4)
O3—C151.272 (4)C9—H70.89 (3)
O4—C151.230 (4)C10—H81.06 (3)
O5—H210.864 (18)C11—C121.482 (4)
O5—H200.860 (9)C12—C131.268 (4)
N1—C51.335 (3)C12—H100.96 (4)
N1—C11.355 (3)C13—C141.505 (5)
N2—C61.372 (3)C13—H110.99 (4)
N2—C51.373 (3)C14—H141.04 (5)
N2—H90.877 (15)C14—H120.97 (4)
N3—C61.340 (3)C14—H130.98 (4)
N3—C101.357 (3)C15—C161.486 (4)
C1—C21.351 (4)C16—C171.280 (5)
C1—H10.99 (3)C16—H151.08 (3)
C2—C31.383 (4)C17—C181.522 (5)
C2—H20.90 (2)C17—H160.98 (4)
C3—C41.359 (3)C18—H191.09 (3)
C3—H30.97 (2)C18—H181.13 (4)
C4—C51.400 (3)C18—H170.92 (4)
O3—Ni1—O186.99 (8)C8—C7—C6119.9 (3)
O3—Ni1—N1175.62 (8)C8—C7—H5122.6 (15)
O1—Ni1—N189.18 (7)C6—C7—H5117.5 (15)
O3—Ni1—N392.38 (8)C7—C8—C9118.6 (3)
O1—Ni1—N3156.74 (8)C7—C8—H6118.9 (14)
N1—Ni1—N390.30 (7)C9—C8—H6122.5 (14)
O3—Ni1—O593.14 (9)C8—C9—C10119.3 (3)
O1—Ni1—O596.93 (12)C8—C9—H7124.0 (19)
N1—Ni1—O589.42 (9)C10—C9—H7116.6 (19)
N3—Ni1—O5106.32 (11)N3—C10—C9123.6 (3)
C11—O1—Ni1112.88 (16)N3—C10—H8113.4 (16)
C15—O3—Ni1128.7 (2)C9—C10—H8123.0 (16)
Ni1—O5—H21141 (2)O2—C11—O1123.6 (2)
Ni1—O5—H20102 (3)O2—C11—C12118.0 (3)
H21—O5—H20117 (3)O1—C11—C12118.4 (3)
C5—N1—C1117.3 (2)C13—C12—C11125.4 (3)
C5—N1—Ni1126.58 (15)C13—C12—H10111 (3)
C1—N1—Ni1116.07 (15)C11—C12—H10123 (3)
C6—N2—C5132.0 (2)C12—C13—C14126.3 (4)
C6—N2—H9113.3 (14)C12—C13—H11109 (2)
C5—N2—H9114.1 (14)C14—C13—H11125 (2)
C6—N3—C10116.3 (2)C13—C14—H14113 (2)
C6—N3—Ni1125.28 (16)C13—C14—H12109 (2)
C10—N3—Ni1118.14 (19)H14—C14—H12110 (3)
C2—C1—N1123.8 (2)C13—C14—H13109 (2)
C2—C1—H1122.5 (14)H14—C14—H13108 (3)
N1—C1—H1113.7 (14)H12—C14—H13108 (3)
C1—C2—C3118.3 (2)O4—C15—O3125.8 (3)
C1—C2—H2120.4 (16)O4—C15—C16117.5 (3)
C3—C2—H2121.3 (16)O3—C15—C16116.7 (3)
C4—C3—C2119.6 (2)C17—C16—C15124.8 (3)
C4—C3—H3121.0 (14)C17—C16—H15109.8 (18)
C2—C3—H3119.4 (14)C15—C16—H15124.3 (19)
C3—C4—C5118.9 (2)C16—C17—C18124.7 (4)
C3—C4—H4119.8 (16)C16—C17—H16117 (3)
C5—C4—H4121.2 (16)C18—C17—H16119 (3)
N1—C5—N2120.8 (2)C17—C18—H19105.4 (18)
N1—C5—C4121.9 (2)C17—C18—H18109 (2)
N2—C5—C4117.2 (2)H19—C18—H18108 (3)
N3—C6—N2121.0 (2)C17—C18—H17116 (3)
N3—C6—C7122.2 (2)H19—C18—H17103 (3)
N2—C6—C7116.8 (2)H18—C18—H17115 (4)
O3—Ni1—O1—C1176.91 (18)Ni1—N1—C5—C4173.39 (18)
N1—Ni1—O1—C11100.97 (18)C6—N2—C5—N111.9 (4)
N3—Ni1—O1—C1112.1 (3)C6—N2—C5—C4168.7 (2)
O5—Ni1—O1—C11169.71 (18)C3—C4—C5—N11.5 (4)
O1—Ni1—O3—C1585.3 (2)C3—C4—C5—N2179.1 (2)
O5—Ni1—O3—C1511.5 (2)C10—N3—C6—N2175.7 (2)
O1—Ni1—N1—C5140.0 (2)Ni1—N3—C6—N210.6 (3)
N3—Ni1—N1—C516.7 (2)C10—N3—C6—C73.4 (4)
O5—Ni1—N1—C5123.1 (2)Ni1—N3—C6—C7170.30 (19)
O1—Ni1—N1—C136.66 (19)C5—N2—C6—N39.3 (4)
N3—Ni1—N1—C1166.59 (19)C5—N2—C6—C7169.9 (2)
O5—Ni1—N1—C160.3 (2)N3—C6—C7—C82.7 (4)
O3—Ni1—N3—C6157.6 (2)N2—C6—C7—C8176.5 (3)
O1—Ni1—N3—C669.7 (3)C6—C7—C8—C90.0 (5)
N1—Ni1—N3—C618.9 (2)C7—C8—C9—C101.6 (5)
O5—Ni1—N3—C6108.4 (2)C6—N3—C10—C91.7 (4)
O3—Ni1—N3—C1016.0 (2)Ni1—N3—C10—C9172.4 (3)
O1—Ni1—N3—C10103.9 (3)C8—C9—C10—N30.8 (5)
N1—Ni1—N3—C10167.4 (2)Ni1—O1—C11—O24.1 (3)
O5—Ni1—N3—C1078.0 (2)Ni1—O1—C11—C12177.52 (19)
C5—N1—C1—C22.6 (4)O2—C11—C12—C13163.8 (3)
Ni1—N1—C1—C2174.4 (2)O1—C11—C12—C1314.7 (5)
N1—C1—C2—C30.1 (4)C11—C12—C13—C14176.9 (3)
C1—C2—C3—C41.8 (4)Ni1—O3—C15—O420.2 (4)
C2—C3—C4—C51.1 (4)Ni1—O3—C15—C16161.29 (19)
C1—N1—C5—N2177.4 (2)O4—C15—C16—C17171.7 (3)
Ni1—N1—C5—N25.9 (3)O3—C15—C16—C179.6 (4)
C1—N1—C5—C43.2 (4)C15—C16—C17—C18179.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H20···O40.86 (1)1.78 (2)2.581 (3)155 (4)
O5—H21···O2i0.86 (2)1.87 (2)2.731 (3)173 (3)
N2—H9···O2ii0.88 (2)1.93 (2)2.801 (3)177 (2)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C4H5O2)2(C10H9N3)(H2O)]
Mr418.09
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.1113 (7), 16.8303 (15), 15.9850 (14)
β (°) 91.291 (2)
V3)1912.7 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.05
Crystal size (mm)0.28 × 0.20 × 0.17
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.758, 0.842
No. of measured, independent and
observed [I > 2σ(I)] reflections
9697, 3448, 2714
Rint0.064
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.086, 0.91
No. of reflections3448
No. of parameters328
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.33

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2004).

Selected bond lengths (Å) top
Ni1—N11.9965 (19)Ni1—O11.9953 (17)
Ni1—N32.020 (2)Ni1—O52.211 (3)
Ni1—O31.9449 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H20···O40.860 (9)1.776 (17)2.581 (3)155 (4)
O5—H21···O2i0.861 (18)1.874 (19)2.731 (3)173 (3)
N2—H9···O2ii0.877 (15)1.925 (16)2.801 (3)177 (2)
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds