Download citation
Download citation
link to html
The title compound, [Ag(C8H10NO3S)(H2O)]·H2O, has a mononuclear structure in which the Ag+ cation is two-coordinated by one N atom from a 2-amino-4,5-dimethyl­benzene­sulfonate anion and one water O atom in a nearly linear arrangement. A network of O—H...O and N—H...O hydrogen bonds helps to consolidate the crystal packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807047897/hb2561sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807047897/hb2561Isup2.hkl
Contains datablock I

CCDC reference: 667137

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.026
  • wR factor = 0.087
  • Data-to-parameter ratio = 15.3

checkCIF/PLATON results

No syntax errors found




Alert level B PLAT420_ALERT_2_B D-H Without Acceptor O2W - H2B ... ?
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.96 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ag1 - O1W .. 6.76 su PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C7
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 7
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the title compound, (I), one water molecule and one 2-amino-4,5-dimethylbenzenesulfonate (L) anion are coordinated to the metal, restulting in slightly distorted linear geometry for Ag (Table 1). The Ag—Owater distance is simiar to the equivalent value in a related compound (Han & Li, 2007).

Here, the coordination ability of the amine group of L is evidently stronger than that of sulfonate group and the latter group does not coordinate to the Ag ion. In the crystal of (I), adjacent ions and water molecules are interconnected by strong O—H···O and N—H···O hydrogen bonds (Table 2) to form a two-dimensional supramolecular network (Fig. 2).

Related literature top

For a related structure, see: Han & Li (2007).

Experimental top

An aqueous solution (10 ml) of 2-amino-4,5-dimethylbenzenesulfonic acid (0.5 mmol) was added to solid Ag2CO3 (0.25 mmol) and stirred for several minutes until no further CO2 was given off. The precipitate was dissolved by dropwise addition of an aqueous solution of NH3 (14 M). Then a methanolic solution of pyridine was added and the mixture stirred for 30 minutes. Crystals of (I) were obtained by evaporation of the solution for several days at room temperature, but the pyridine did not react with silver sulfonate.

Refinement top

The H atoms bonded to O were located in a difference map and were freely refined. The H atoms bonded to N were located in a difference map and their positions refined freely, with Uiso(H) = 1.5Ueq(N). The H atoms bonded to C atom were positioned geometrically (C—H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C).

Structure description top

In the title compound, (I), one water molecule and one 2-amino-4,5-dimethylbenzenesulfonate (L) anion are coordinated to the metal, restulting in slightly distorted linear geometry for Ag (Table 1). The Ag—Owater distance is simiar to the equivalent value in a related compound (Han & Li, 2007).

Here, the coordination ability of the amine group of L is evidently stronger than that of sulfonate group and the latter group does not coordinate to the Ag ion. In the crystal of (I), adjacent ions and water molecules are interconnected by strong O—H···O and N—H···O hydrogen bonds (Table 2) to form a two-dimensional supramolecular network (Fig. 2).

For a related structure, see: Han & Li (2007).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Two-dimensional supramolecular framework of (I), formed through hydrogen-bonding (dashed lines) interactions. The H atoms not involved in hydrogen bonding have been omitted for clarity.
(2-Amino-4,5-dimethylbenzenesulfonato-κN)aquasilver(I) monohydrate top
Crystal data top
[Ag(C8H10NO3S)(H2O)]·H2OZ = 2
Mr = 344.13F(000) = 344
Triclinic, P1Dx = 1.927 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.555 (5) ÅCell parameters from 2584 reflections
b = 7.626 (6) Åθ = 1.7–27.5°
c = 12.1290 (11) ŵ = 1.88 mm1
α = 78.889 (4)°T = 293 K
β = 85.746 (7)°Block, colourless
γ = 87.754 (4)°0.25 × 0.23 × 0.21 mm
V = 593.1 (7) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2584 independent reflections
Radiation source: fine-focus sealed tube2277 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 10.0 pixels mm-1θmax = 27.5°, θmin = 1.7°
ω scansh = 88
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 98
Tmin = 0.625, Tmax = 0.677l = 1515
4856 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: difmap and geom
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.14 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.0536P]
where P = (Fo2 + 2Fc2)/3
2584 reflections(Δ/σ)max = 0.001
169 parametersΔρmax = 0.51 e Å3
7 restraintsΔρmin = 0.72 e Å3
Crystal data top
[Ag(C8H10NO3S)(H2O)]·H2Oγ = 87.754 (4)°
Mr = 344.13V = 593.1 (7) Å3
Triclinic, P1Z = 2
a = 6.555 (5) ÅMo Kα radiation
b = 7.626 (6) ŵ = 1.88 mm1
c = 12.1290 (11) ÅT = 293 K
α = 78.889 (4)°0.25 × 0.23 × 0.21 mm
β = 85.746 (7)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2584 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2277 reflections with I > 2σ(I)
Tmin = 0.625, Tmax = 0.677Rint = 0.016
4856 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0267 restraints
wR(F2) = 0.087H atoms treated by a mixture of independent and constrained refinement
S = 1.14Δρmax = 0.51 e Å3
2584 reflectionsΔρmin = 0.72 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.33890 (4)0.48750 (3)0.39012 (2)0.04069 (11)
C10.6290 (4)0.1518 (3)0.2095 (2)0.0240 (5)
C20.7019 (4)0.1533 (4)0.0981 (2)0.0295 (5)
H20.83370.10960.08410.035*
C30.5843 (5)0.2179 (4)0.0075 (2)0.0303 (6)
C40.3854 (5)0.2816 (4)0.0293 (2)0.0310 (6)
C50.3130 (4)0.2813 (4)0.1399 (2)0.0287 (5)
H50.18100.32480.15380.034*
C60.4314 (4)0.2180 (3)0.2310 (2)0.0230 (5)
C70.2479 (6)0.3485 (5)0.0654 (3)0.0456 (8)
H7A0.31040.44710.11630.068*
H7B0.11820.38690.03500.068*
H7C0.22790.25390.10520.068*
C80.6710 (6)0.2165 (5)0.1103 (3)0.0431 (7)
H8A0.58630.14680.14570.065*
H8B0.80700.16510.10830.065*
H8C0.67510.33670.15250.065*
N10.3465 (4)0.2264 (3)0.3425 (2)0.0255 (4)
O10.9374 (4)0.0551 (3)0.2715 (2)0.0460 (6)
O20.8951 (3)0.2202 (3)0.3429 (2)0.0406 (5)
O30.6674 (3)0.0227 (3)0.41254 (19)0.0393 (5)
O1W0.2817 (5)0.7591 (4)0.4077 (3)0.0538 (6)
O2W0.2412 (6)0.4253 (4)0.6255 (3)0.0702 (9)
S10.79500 (9)0.06607 (9)0.31726 (6)0.02624 (15)
H1A0.194 (7)0.829 (6)0.357 (4)0.078 (16)*
H2A0.210 (10)0.511 (8)0.671 (5)0.12 (2)*
H1B0.405 (6)0.836 (6)0.396 (4)0.071 (15)*
H2B0.106 (6)0.420 (8)0.621 (5)0.078 (17)*
H3A0.407 (11)0.159 (10)0.396 (6)0.039*
H3B0.227 (5)0.205 (5)0.348 (3)0.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.05284 (18)0.03144 (15)0.04011 (16)0.00482 (10)0.00194 (11)0.01421 (10)
C10.0262 (12)0.0232 (12)0.0226 (12)0.0011 (9)0.0000 (9)0.0046 (9)
C20.0320 (13)0.0297 (14)0.0270 (14)0.0025 (11)0.0060 (10)0.0089 (11)
C30.0414 (14)0.0280 (13)0.0216 (13)0.0058 (11)0.0030 (10)0.0059 (10)
C40.0409 (14)0.0280 (14)0.0248 (14)0.0040 (11)0.0044 (11)0.0050 (11)
C50.0302 (12)0.0260 (13)0.0309 (14)0.0009 (10)0.0028 (10)0.0079 (11)
C60.0268 (12)0.0207 (11)0.0222 (12)0.0027 (9)0.0014 (9)0.0062 (9)
C70.057 (2)0.0457 (19)0.0351 (17)0.0030 (15)0.0166 (14)0.0061 (14)
C80.0564 (19)0.0478 (19)0.0258 (15)0.0063 (15)0.0060 (13)0.0110 (13)
N10.0254 (11)0.0266 (11)0.0241 (11)0.0005 (9)0.0039 (8)0.0063 (9)
O10.0447 (12)0.0547 (14)0.0387 (13)0.0253 (11)0.0037 (10)0.0145 (11)
O20.0352 (10)0.0441 (13)0.0458 (13)0.0060 (9)0.0077 (9)0.0136 (10)
O30.0368 (11)0.0471 (13)0.0278 (11)0.0036 (9)0.0009 (8)0.0076 (9)
O1W0.0664 (17)0.0416 (14)0.0564 (17)0.0055 (13)0.0097 (13)0.0164 (12)
O2W0.081 (2)0.0529 (18)0.072 (2)0.0036 (16)0.0116 (17)0.0081 (16)
S10.0232 (3)0.0301 (3)0.0250 (3)0.0029 (2)0.0003 (2)0.0057 (3)
Geometric parameters (Å, º) top
Ag1—O1W2.139 (3)C7—H7B0.9600
Ag1—N12.176 (3)C7—H7C0.9600
C1—C21.397 (4)C8—H8A0.9600
C1—C61.397 (4)C8—H8B0.9600
C1—S11.774 (3)C8—H8C0.9600
C2—C31.390 (4)N1—H3B0.80 (3)
C2—H20.9300N1—H3A0.86 (7)
C3—C41.398 (4)O1—S11.445 (2)
C3—C81.500 (4)O2—S11.462 (2)
C4—C51.390 (4)O3—S11.447 (2)
C4—C71.511 (4)O1W—H1B1.00 (4)
C5—C61.395 (4)O1W—H1A0.95 (4)
C5—H50.9300O2W—H2B0.89 (4)
C6—N11.436 (3)O2W—H2A0.94 (4)
C7—H7A0.9600
O1W—Ag1—N1166.73 (10)H7B—C7—H7C109.5
C2—C1—C6119.1 (2)C3—C8—H8A109.5
C2—C1—S1117.8 (2)C3—C8—H8B109.5
C6—C1—S1123.1 (2)H8A—C8—H8B109.5
C3—C2—C1122.4 (3)C3—C8—H8C109.5
C3—C2—H2118.8H8A—C8—H8C109.5
C1—C2—H2118.8H8B—C8—H8C109.5
C2—C3—C4118.5 (3)C6—N1—Ag1116.43 (17)
C2—C3—C8120.0 (3)C6—N1—H3B110 (3)
C4—C3—C8121.5 (3)Ag1—N1—H3B101 (3)
C5—C4—C3119.2 (3)C6—N1—H3A115 (5)
C5—C4—C7119.8 (3)Ag1—N1—H3A103 (5)
C3—C4—C7121.0 (3)H3B—N1—H3A110 (6)
C4—C5—C6122.3 (3)Ag1—O1W—H1B115 (3)
C4—C5—H5118.8Ag1—O1W—H1A117 (3)
C6—C5—H5118.8H1B—O1W—H1A101 (4)
C5—C6—C1118.5 (2)H2B—O2W—H2A86 (4)
C5—C6—N1118.7 (2)O1—S1—O3112.80 (15)
C1—C6—N1122.8 (2)O1—S1—O2112.65 (16)
C4—C7—H7A109.5O3—S1—O2111.73 (14)
C4—C7—H7B109.5O1—S1—C1106.17 (13)
H7A—C7—H7B109.5O3—S1—C1106.57 (13)
C4—C7—H7C109.5O2—S1—C1106.35 (14)
H7A—C7—H7C109.5
C6—C1—C2—C30.2 (4)S1—C1—C6—C5179.6 (2)
S1—C1—C2—C3179.9 (2)C2—C1—C6—N1178.1 (2)
C1—C2—C3—C40.7 (4)S1—C1—C6—N11.5 (4)
C1—C2—C3—C8179.9 (3)C5—C6—N1—Ag176.6 (3)
C2—C3—C4—C51.1 (4)C1—C6—N1—Ag1102.3 (3)
C8—C3—C4—C5179.5 (3)O1W—Ag1—N1—C666.5 (5)
C2—C3—C4—C7178.2 (3)C2—C1—S1—O124.8 (3)
C8—C3—C4—C71.2 (4)C6—C1—S1—O1155.5 (2)
C3—C4—C5—C60.6 (4)C2—C1—S1—O3145.3 (2)
C7—C4—C5—C6178.7 (3)C6—C1—S1—O335.1 (3)
C4—C5—C6—C10.4 (4)C2—C1—S1—O295.4 (2)
C4—C5—C6—N1178.5 (2)C6—C1—S1—O284.3 (2)
C2—C1—C6—C50.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O1i0.95 (4)2.11 (4)3.038 (4)165 (4)
O1W—H1B···O3ii1.00 (4)2.11 (4)3.091 (4)167 (4)
O2W—H2A···O2iii0.94 (4)2.12 (6)2.901 (5)140 (6)
N1—H3A···O30.86 (7)2.15 (7)2.843 (3)138 (7)
N1—H3A···O3iv0.86 (7)2.38 (8)3.073 (3)138 (7)
N1—H3B···O2v0.80 (3)2.18 (3)2.961 (4)165 (4)
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ag(C8H10NO3S)(H2O)]·H2O
Mr344.13
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)6.555 (5), 7.626 (6), 12.1290 (11)
α, β, γ (°)78.889 (4), 85.746 (7), 87.754 (4)
V3)593.1 (7)
Z2
Radiation typeMo Kα
µ (mm1)1.88
Crystal size (mm)0.25 × 0.23 × 0.21
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.625, 0.677
No. of measured, independent and
observed [I > 2σ(I)] reflections
4856, 2584, 2277
Rint0.016
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.087, 1.14
No. of reflections2584
No. of parameters169
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.72

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990).

Selected geometric parameters (Å, º) top
Ag1—O1W2.139 (3)Ag1—N12.176 (3)
O1W—Ag1—N1166.73 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O1i0.95 (4)2.11 (4)3.038 (4)165 (4)
O1W—H1B···O3ii1.00 (4)2.11 (4)3.091 (4)167 (4)
O2W—H2A···O2iii0.94 (4)2.12 (6)2.901 (5)140 (6)
N1—H3A···O30.86 (7)2.15 (7)2.843 (3)138 (7)
N1—H3A···O3iv0.86 (7)2.38 (8)3.073 (3)138 (7)
N1—H3B···O2v0.80 (3)2.18 (3)2.961 (4)165 (4)
Symmetry codes: (i) x1, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds