Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C25H20ClN3O3, the central benzene ring makes dihedral angles of 7.56 (10), 39.46 (7) and 63.03 (7)° with the pyrazolone ring, the chloro­benzene ring and the terminal phenyl ring, respectively. The packing is stabilized by weak C—H...O inter­molecular hydrogen bonds that link mol­ecules into chains running along the b axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807043796/hb2534sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807043796/hb2534Isup2.hkl
Contains datablock I

CCDC reference: 663749

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C)= 0.004 Å
  • R factor = 0.044
  • wR factor = 0.120
  • Data-to-parameter ratio = 13.6

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

The synthesis and structure of Schiff bases have attracted much attention in biology and chemistry (Kahwa et al., 1986 and Klayman et al., 1979). Many Schiff base derivatives have been synthesized and employed to develop protein and enzyme mimics (Santos et al., 2001). Among the large number of compounds, 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one forms a variety of Schiff bases with aldehydes, and the synthesis and crystal structures of some of them, such as (E)-4-[4-(4-Chlorobenzyloxy)benzylideneamino]-1,5- dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (Hu, 2006) has been reported. Such structural information is useful when investigating the potential coordination properties of Schiff bases functioning as ligands. We new report the synthesis and molecular structure of the title Schiff base, (I), (Fig. 1)

In the title molecule (Fig. 1), the pyrazolone ring (C15—C17/N1/N2/N3/O3) is nearly planar, with an r.m.s. deviation for the fitted atoms of 0.038 Å. It makes a dihedral angle of 55.54 (7)° with its attached phenyl ring (C20—C25). The central benzene ring (C8—C14/O1) is almost planar, with an r.m.s. deviation for fitted atoms of 0.017 Å. This group makes dihedral angles of 7.56 (10)°, 39.46 (7)° and 63.03 (7)°, respectively, with the the pyrazolone ring (C15—C17/N1/N2/N3/O3), the terminal C1—C6 benzene ring and the terminal C20—C25 phenyl ring. Otherwise, all bond lengths and angles are within their normal ranges (Allen et al., 1987).

The packing for (I) is stabilized by weak, non-classical intermolecular C—H···O hydrogen bonds that links molecules into one-dimensional extended chains running along the b axis (Fig. 2, Table 1).

Related literature top

For general background, see: Hu (2006); Kahwa et al. (1986); Klayman et al. (1979); Santos et al. (2001). For reference structural data, see: Allen et al. (1987).

Experimental top

An anhydrous ethanol solution (50 ml) of 4-formylphenyl 4-chlorobenzoate (2.61 g, 10 mmol) was added to an anhydrous ethanol solution (50 ml) of 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one (2.03 g, 10 mmol) and the mixture stirred at 350 K for 3 h under N2, giving a yellow precipitate. The product was isolated, recrystallized from acetonitrile, and then dried in a vacuum to give pure compound (I) in 87% yield. Yellow blocks of (I) were obtained by slow evaporation of an acetonitrile solution.

Refinement top

The H atoms were included in calculated positions and refined using a riding model approximation. Constrained C—H and N—H bond lengths and isotropic U parameters: 0.93 Å and Uiso(H) = 1.2Ueq(C) for Csp2—H; 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene C—H; 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl C—H.

Structure description top

The synthesis and structure of Schiff bases have attracted much attention in biology and chemistry (Kahwa et al., 1986 and Klayman et al., 1979). Many Schiff base derivatives have been synthesized and employed to develop protein and enzyme mimics (Santos et al., 2001). Among the large number of compounds, 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one forms a variety of Schiff bases with aldehydes, and the synthesis and crystal structures of some of them, such as (E)-4-[4-(4-Chlorobenzyloxy)benzylideneamino]-1,5- dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (Hu, 2006) has been reported. Such structural information is useful when investigating the potential coordination properties of Schiff bases functioning as ligands. We new report the synthesis and molecular structure of the title Schiff base, (I), (Fig. 1)

In the title molecule (Fig. 1), the pyrazolone ring (C15—C17/N1/N2/N3/O3) is nearly planar, with an r.m.s. deviation for the fitted atoms of 0.038 Å. It makes a dihedral angle of 55.54 (7)° with its attached phenyl ring (C20—C25). The central benzene ring (C8—C14/O1) is almost planar, with an r.m.s. deviation for fitted atoms of 0.017 Å. This group makes dihedral angles of 7.56 (10)°, 39.46 (7)° and 63.03 (7)°, respectively, with the the pyrazolone ring (C15—C17/N1/N2/N3/O3), the terminal C1—C6 benzene ring and the terminal C20—C25 phenyl ring. Otherwise, all bond lengths and angles are within their normal ranges (Allen et al., 1987).

The packing for (I) is stabilized by weak, non-classical intermolecular C—H···O hydrogen bonds that links molecules into one-dimensional extended chains running along the b axis (Fig. 2, Table 1).

For general background, see: Hu (2006); Kahwa et al. (1986); Klayman et al. (1979); Santos et al. (2001). For reference structural data, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids for non-H atoms drawn at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram for (I), with H bonds drawn as dashed lines.
(E)-4-[(1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro -1H-pyrazol-4-ylimino)methyl]phenyl 4-chlorobenzoate top
Crystal data top
C25H20ClN3O3F(000) = 1856
Mr = 445.89Dx = 1.344 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2545 reflections
a = 31.764 (7) Åθ = 3.2–24.2°
b = 6.7113 (16) ŵ = 0.21 mm1
c = 25.605 (6) ÅT = 294 K
β = 126.165 (3)°Block, yellow
V = 4406.7 (18) Å30.26 × 0.24 × 0.20 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
3962 independent reflections
Radiation source: fine-focus sealed tube2422 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
φ and ω scansθmax = 25.2°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3837
Tmin = 0.921, Tmax = 0.960k = 85
10804 measured reflectionsl = 3029
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.4018P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3962 reflectionsΔρmax = 0.23 e Å3
292 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0009 (2)
Crystal data top
C25H20ClN3O3V = 4406.7 (18) Å3
Mr = 445.89Z = 8
Monoclinic, C2/cMo Kα radiation
a = 31.764 (7) ŵ = 0.21 mm1
b = 6.7113 (16) ÅT = 294 K
c = 25.605 (6) Å0.26 × 0.24 × 0.20 mm
β = 126.165 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3962 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2422 reflections with I > 2σ(I)
Tmin = 0.921, Tmax = 0.960Rint = 0.051
10804 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.03Δρmax = 0.23 e Å3
3962 reflectionsΔρmin = 0.21 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.02921 (3)0.85943 (14)0.32838 (3)0.0868 (3)
O10.06375 (6)0.6862 (2)0.60622 (7)0.0559 (5)
O20.10080 (8)0.9908 (3)0.62984 (8)0.0897 (7)
O30.14117 (6)0.6064 (2)0.98425 (7)0.0527 (4)
N10.14862 (7)0.3501 (3)0.88646 (8)0.0454 (5)
N20.20831 (7)0.1617 (3)1.04555 (8)0.0450 (5)
N30.18559 (7)0.3329 (3)1.05031 (8)0.0423 (5)
C10.07274 (9)1.0228 (4)0.50268 (11)0.0637 (7)
H10.08631.13580.52860.076*
C20.06193 (9)1.0265 (5)0.44201 (12)0.0655 (7)
H20.06781.14100.42670.079*
C30.04222 (8)0.8573 (4)0.40467 (10)0.0548 (7)
C40.03306 (9)0.6874 (4)0.42588 (11)0.0567 (7)
H40.02000.57420.40000.068*
C50.04351 (8)0.6865 (4)0.48666 (10)0.0526 (6)
H50.03690.57250.50130.063*
C60.06368 (8)0.8535 (4)0.52553 (10)0.0475 (6)
C70.07797 (9)0.8564 (4)0.59202 (11)0.0547 (7)
C80.07828 (8)0.6511 (4)0.66906 (10)0.0477 (6)
C90.09811 (9)0.4660 (4)0.69396 (10)0.0545 (6)
H90.10230.37390.67020.065*
C100.11186 (9)0.4166 (4)0.75437 (11)0.0541 (6)
H100.12530.29070.77120.065*
C110.10592 (8)0.5522 (4)0.79049 (10)0.0470 (6)
C120.08446 (9)0.7354 (4)0.76314 (11)0.0601 (7)
H120.07900.82630.78600.072*
C130.07073 (9)0.7882 (4)0.70247 (11)0.0602 (7)
H130.05680.91310.68500.072*
C140.12225 (8)0.5065 (4)0.85623 (10)0.0507 (6)
H140.11320.59360.87630.061*
C150.16474 (8)0.3141 (3)0.94963 (10)0.0391 (5)
C160.19226 (8)0.1468 (3)0.98340 (10)0.0422 (5)
C170.16029 (8)0.4388 (3)0.99142 (10)0.0398 (5)
C180.20356 (9)0.0335 (4)0.96011 (11)0.0579 (7)
H18A0.24060.05420.98570.087*
H18B0.19020.01580.91560.087*
H18C0.18720.14720.96400.087*
C190.21951 (10)0.0063 (4)1.08845 (11)0.0638 (7)
H19A0.19370.10811.06460.096*
H19B0.21890.03821.12360.096*
H19C0.25340.05931.10530.096*
C200.21162 (8)0.4321 (3)1.11138 (9)0.0407 (5)
C210.26530 (9)0.4262 (4)1.15526 (10)0.0491 (6)
H210.28510.35121.14660.059*
C220.28909 (10)0.5325 (4)1.21193 (11)0.0603 (7)
H220.32520.52841.24180.072*
C230.26000 (11)0.6446 (4)1.22477 (11)0.0618 (7)
H230.27640.71731.26300.074*
C240.20683 (11)0.6495 (4)1.18132 (12)0.0603 (7)
H240.18730.72561.19020.072*
C250.18209 (9)0.5423 (3)1.12451 (11)0.0493 (6)
H250.14590.54411.09530.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0819 (5)0.1383 (8)0.0487 (4)0.0290 (5)0.0433 (4)0.0191 (4)
O10.0649 (11)0.0630 (12)0.0327 (8)0.0080 (9)0.0249 (8)0.0011 (8)
O20.1223 (16)0.0849 (15)0.0484 (10)0.0433 (13)0.0429 (11)0.0191 (11)
O30.0628 (10)0.0451 (10)0.0453 (9)0.0098 (8)0.0292 (8)0.0067 (8)
N10.0438 (11)0.0510 (13)0.0350 (10)0.0041 (9)0.0196 (9)0.0035 (9)
N20.0558 (12)0.0353 (11)0.0403 (11)0.0024 (9)0.0264 (9)0.0060 (9)
N30.0486 (11)0.0378 (11)0.0362 (10)0.0034 (9)0.0227 (9)0.0037 (9)
C10.0691 (17)0.0617 (18)0.0473 (15)0.0138 (14)0.0271 (13)0.0019 (13)
C20.0658 (17)0.076 (2)0.0518 (15)0.0055 (15)0.0329 (14)0.0155 (15)
C30.0397 (14)0.085 (2)0.0363 (13)0.0086 (13)0.0207 (11)0.0081 (14)
C40.0487 (14)0.0705 (19)0.0429 (14)0.0070 (13)0.0226 (12)0.0091 (13)
C50.0493 (14)0.0601 (17)0.0431 (14)0.0091 (12)0.0243 (12)0.0016 (12)
C60.0403 (13)0.0580 (16)0.0341 (12)0.0036 (12)0.0164 (11)0.0032 (12)
C70.0552 (15)0.0600 (17)0.0389 (14)0.0072 (13)0.0223 (13)0.0001 (13)
C80.0448 (13)0.0616 (17)0.0300 (11)0.0011 (12)0.0184 (11)0.0051 (12)
C90.0619 (15)0.0588 (17)0.0437 (14)0.0055 (13)0.0317 (12)0.0005 (12)
C100.0571 (15)0.0557 (16)0.0432 (13)0.0141 (12)0.0260 (12)0.0096 (12)
C110.0446 (13)0.0555 (16)0.0337 (12)0.0056 (12)0.0191 (11)0.0051 (11)
C120.0730 (17)0.0668 (18)0.0444 (14)0.0189 (14)0.0368 (13)0.0076 (13)
C130.0661 (17)0.0648 (18)0.0433 (14)0.0217 (14)0.0288 (13)0.0147 (13)
C140.0527 (14)0.0588 (16)0.0394 (13)0.0003 (13)0.0265 (11)0.0000 (12)
C150.0404 (12)0.0387 (13)0.0355 (12)0.0043 (10)0.0209 (10)0.0016 (10)
C160.0432 (13)0.0396 (14)0.0432 (13)0.0050 (11)0.0253 (11)0.0005 (11)
C170.0391 (12)0.0371 (14)0.0380 (12)0.0029 (11)0.0199 (10)0.0040 (11)
C180.0743 (17)0.0459 (16)0.0612 (15)0.0013 (13)0.0442 (14)0.0006 (12)
C190.0869 (19)0.0444 (16)0.0569 (15)0.0035 (14)0.0406 (14)0.0147 (13)
C200.0519 (14)0.0370 (13)0.0339 (12)0.0030 (11)0.0256 (11)0.0046 (10)
C210.0502 (14)0.0572 (16)0.0397 (13)0.0006 (12)0.0264 (12)0.0057 (12)
C220.0559 (15)0.0743 (19)0.0383 (13)0.0053 (14)0.0209 (12)0.0025 (13)
C230.079 (2)0.0604 (18)0.0393 (14)0.0069 (15)0.0313 (15)0.0047 (12)
C240.082 (2)0.0554 (17)0.0581 (16)0.0026 (14)0.0494 (16)0.0023 (14)
C250.0543 (14)0.0489 (15)0.0480 (13)0.0005 (12)0.0320 (12)0.0043 (12)
Geometric parameters (Å, º) top
Cl1—C31.742 (2)C10—H100.9300
O1—C71.355 (3)C11—C121.380 (3)
O1—C81.408 (2)C11—C141.472 (3)
O2—C71.204 (3)C12—C131.389 (3)
O3—C171.239 (3)C12—H120.9300
N1—C141.280 (3)C13—H130.9300
N1—C151.400 (3)C14—H140.9300
N2—C161.358 (3)C15—C161.371 (3)
N2—N31.400 (2)C15—C171.430 (3)
N2—C191.464 (3)C16—C181.484 (3)
N3—C171.412 (3)C18—H18A0.9600
N3—C201.431 (3)C18—H18B0.9600
C1—C21.379 (3)C18—H18C0.9600
C1—C61.384 (3)C19—H19A0.9600
C1—H10.9300C19—H19B0.9600
C2—C31.375 (4)C19—H19C0.9600
C2—H20.9300C20—C211.382 (3)
C3—C41.366 (3)C20—C251.383 (3)
C4—C51.386 (3)C21—C221.375 (3)
C4—H40.9300C21—H210.9300
C5—C61.380 (3)C22—C231.374 (3)
C5—H50.9300C22—H220.9300
C6—C71.481 (3)C23—C241.369 (3)
C8—C91.368 (3)C23—H230.9300
C8—C131.371 (3)C24—C251.379 (3)
C9—C101.377 (3)C24—H240.9300
C9—H90.9300C25—H250.9300
C10—C111.387 (3)
C7—O1—C8120.77 (18)C8—C13—H13120.9
C14—N1—C15120.2 (2)C12—C13—H13120.9
C16—N2—N3107.82 (16)N1—C14—C11121.7 (2)
C16—N2—C19125.42 (19)N1—C14—H14119.1
N3—N2—C19118.44 (18)C11—C14—H14119.1
N2—N3—C17108.53 (17)C16—C15—N1122.2 (2)
N2—N3—C20118.83 (16)C16—C15—C17108.37 (19)
C17—N3—C20122.04 (18)N1—C15—C17129.3 (2)
C2—C1—C6121.0 (2)N2—C16—C15109.73 (19)
C2—C1—H1119.5N2—C16—C18121.21 (19)
C6—C1—H1119.5C15—C16—C18129.0 (2)
C3—C2—C1118.5 (2)O3—C17—N3122.4 (2)
C3—C2—H2120.8O3—C17—C15132.6 (2)
C1—C2—H2120.8N3—C17—C15105.01 (19)
C4—C3—C2122.0 (2)C16—C18—H18A109.5
C4—C3—Cl1119.2 (2)C16—C18—H18B109.5
C2—C3—Cl1118.9 (2)H18A—C18—H18B109.5
C3—C4—C5118.9 (2)C16—C18—H18C109.5
C3—C4—H4120.5H18A—C18—H18C109.5
C5—C4—H4120.5H18B—C18—H18C109.5
C6—C5—C4120.5 (2)N2—C19—H19A109.5
C6—C5—H5119.7N2—C19—H19B109.5
C4—C5—H5119.7H19A—C19—H19B109.5
C5—C6—C1119.1 (2)N2—C19—H19C109.5
C5—C6—C7122.5 (2)H19A—C19—H19C109.5
C1—C6—C7118.4 (2)H19B—C19—H19C109.5
O2—C7—O1123.7 (2)C21—C20—C25120.4 (2)
O2—C7—C6124.4 (2)C21—C20—N3121.0 (2)
O1—C7—C6111.9 (2)C25—C20—N3118.50 (19)
C9—C8—C13121.4 (2)C22—C21—C20119.3 (2)
C9—C8—O1115.8 (2)C22—C21—H21120.4
C13—C8—O1122.7 (2)C20—C21—H21120.4
C8—C9—C10119.7 (2)C23—C22—C21120.6 (2)
C8—C9—H9120.1C23—C22—H22119.7
C10—C9—H9120.1C21—C22—H22119.7
C9—C10—C11120.9 (2)C24—C23—C22120.0 (2)
C9—C10—H10119.6C24—C23—H23120.0
C11—C10—H10119.6C22—C23—H23120.0
C12—C11—C10117.8 (2)C23—C24—C25120.4 (2)
C12—C11—C14120.1 (2)C23—C24—H24119.8
C10—C11—C14122.1 (2)C25—C24—H24119.8
C11—C12—C13122.0 (2)C24—C25—C20119.3 (2)
C11—C12—H12119.0C24—C25—H25120.4
C13—C12—H12119.0C20—C25—H25120.4
C8—C13—C12118.1 (2)
C16—N2—N3—C177.5 (2)C12—C11—C14—N1170.3 (2)
C19—N2—N3—C17157.56 (18)C10—C11—C14—N19.0 (3)
C16—N2—N3—C20152.92 (18)C14—N1—C15—C16178.8 (2)
C19—N2—N3—C2057.0 (3)C14—N1—C15—C176.2 (3)
C6—C1—C2—C30.5 (4)N3—N2—C16—C156.8 (2)
C1—C2—C3—C40.1 (4)C19—N2—C16—C15154.1 (2)
C1—C2—C3—Cl1179.20 (19)N3—N2—C16—C18171.50 (19)
C2—C3—C4—C50.6 (4)C19—N2—C16—C1824.1 (3)
Cl1—C3—C4—C5179.97 (17)N1—C15—C16—N2172.45 (18)
C3—C4—C5—C61.1 (3)C17—C15—C16—N23.4 (2)
C4—C5—C6—C10.8 (3)N1—C15—C16—C189.5 (4)
C4—C5—C6—C7176.8 (2)C17—C15—C16—C18174.7 (2)
C2—C1—C6—C50.0 (4)N2—N3—C17—O3172.80 (18)
C2—C1—C6—C7177.7 (2)C20—N3—C17—O328.7 (3)
C8—O1—C7—O24.2 (4)N2—N3—C17—C155.3 (2)
C8—O1—C7—C6173.80 (18)C20—N3—C17—C15149.38 (19)
C5—C6—C7—O2171.5 (3)C16—C15—C17—O3176.6 (2)
C1—C6—C7—O26.1 (4)N1—C15—C17—O31.1 (4)
C5—C6—C7—O16.5 (3)C16—C15—C17—N31.3 (2)
C1—C6—C7—O1175.9 (2)N1—C15—C17—N3176.73 (19)
C7—O1—C8—C9133.6 (2)N2—N3—C20—C2129.5 (3)
C7—O1—C8—C1349.8 (3)C17—N3—C20—C21111.0 (2)
C13—C8—C9—C101.3 (4)N2—N3—C20—C25153.43 (19)
O1—C8—C9—C10178.0 (2)C17—N3—C20—C2566.0 (3)
C8—C9—C10—C110.0 (4)C25—C20—C21—C220.5 (3)
C9—C10—C11—C121.8 (4)N3—C20—C21—C22176.4 (2)
C9—C10—C11—C14177.5 (2)C20—C21—C22—C230.5 (4)
C10—C11—C12—C132.3 (4)C21—C22—C23—C240.7 (4)
C14—C11—C12—C13177.0 (2)C22—C23—C24—C250.0 (4)
C9—C8—C13—C120.9 (4)C23—C24—C25—C201.0 (4)
O1—C8—C13—C12177.3 (2)C21—C20—C25—C241.3 (3)
C11—C12—C13—C81.0 (4)N3—C20—C25—C24175.8 (2)
C15—N1—C14—C11178.23 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18C···O3i0.962.463.405 (3)169
C19—H19A···O3i0.962.583.497 (3)161
C2—H2···O3ii0.932.533.219 (3)131
Symmetry codes: (i) x, y1, z; (ii) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC25H20ClN3O3
Mr445.89
Crystal system, space groupMonoclinic, C2/c
Temperature (K)294
a, b, c (Å)31.764 (7), 6.7113 (16), 25.605 (6)
β (°) 126.165 (3)
V3)4406.7 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.26 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.921, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
10804, 3962, 2422
Rint0.051
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.120, 1.03
No. of reflections3962
No. of parameters292
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.21

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18C···O3i0.962.463.405 (3)169
C19—H19A···O3i0.962.583.497 (3)161
C2—H2···O3ii0.932.533.219 (3)131
Symmetry codes: (i) x, y1, z; (ii) x, y+2, z1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds