Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The asymmetric unit in the polymeric title compound, [Ag(C12H10N4)]n·nPF6·nC2H3N, comprises an Ag cation, two half 3-pyridine­aldazine (3-PA) mol­ecules, each disposed about a centre of inversion, a hexa­fluoridophosphate anion and an acetonitrile solvent mol­ecule. The Ag atoms bond to two N atoms and the bridging 3-PA ligands lead to the formation of zigzag chains that are linked into a layer structure via weakly bridging acetonitrile mol­ecules and argentophilic inter­actions [Ag...Ag = 3.2590 (15) Å]. The layers stack along the b axis and are inter­spersed by layers of hexa­fluoridophosphate anions. Various C—H...F and C—H...N inter­actions help to consolidate the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807042912/hb2531sup1.cif
Contains datablocks general, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807042912/hb2531Isup2.hkl
Contains datablock I

CCDC reference: 663569

Key indicators

  • Single-crystal X-ray study
  • T = 98 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.024
  • wR factor = 0.061
  • Data-to-parameter ratio = 14.4

checkCIF/PLATON results

No syntax errors found



Alert level B ABSTM02_ALERT_3_B The ratio of expected to reported Tmax/Tmin(RR') is < 0.75 Tmin and Tmax reported: 0.406 1.000 Tmin(prime) and Tmax expected: 0.662 0.874 RR(prime) = 0.536 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_B Tmax/Tmin Range Test RR' too Large ............. 0.53
Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.87 PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for P1
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.874 Tmax scaled 0.874 Tmin scaled 0.355 PLAT794_ALERT_5_G Check Predicted Bond Valency for Ag (9) 0.87
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The structure of the title compound (I) was investigated as part of an on-going study of the structural chemistry of silver salts of the isomeric n-pyridinealdazine, n = 2, 3 and 4, molecules (Broker & Tiekink, 2007a-c).

Compound (I) features an Ag cation in a general position, two half 3-pyridinealdazine molecules, each disposed about a centre of inversion, an hexafluorophosphate anion and an acetonitrile solvent molecule, each in general positions (Fig. 1 & Table 1). The 3-pyridinealdazine molecule is bidentate bridging leading to a zigzag chain with a linear N2 coordination geometry for Ag.

The chains thus formed are linked via weakly bridging acetonitrile molecules with Ag···N5 and N5···Agi of 2.800 (3) and 2.826 (2) Å, respectively, as well as Ag···Agi interactions of 3.2590 (15) Å for (i): -x, 2 - y, -z. The topology of the resulting layer in the ac plane resembles a brick wall (Fig. 2).

The layers stack along the b axis and are interspersed by layers of PF6 anions. Various C—H···N and F interactions consolidate the structure (Fig. 3 & Table 2).

The zigzag topology found for the [Ag(C12H10N4)]n chain in (I) has precedents in the perchlorate, tetrafluoroborate salts (each as acetonitrile solvates) (Kennedy et al., 2005), and the methansulfonate salt (Broker & Tiekink, 2007c).

Related literature top

For related polymeric silver salts containing the 3-pyridinealdazine ligand, see: Kennedy et al. (2005); Broker & Tiekink (2007c). For related literature, see: Broker & Tiekink (2007a,b).

Experimental top

Ag(PF6) (Aldrich, 0.05 g, 0.20 mmol) was dissolved in CH3CN (20 ml) and layered on top of a CH2Cl2 solution (20 ml) containing 0.041 g (0.20 mmol) of 3-pyridinealdazine (Aldrich). After three days, yellow prisms of (I) were observed at the interface between the two layers; m.p. 579–581 K.

Refinement top

All the H atoms were included in the riding-model approximation, with C–H = 0.95–98 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C).

Structure description top

The structure of the title compound (I) was investigated as part of an on-going study of the structural chemistry of silver salts of the isomeric n-pyridinealdazine, n = 2, 3 and 4, molecules (Broker & Tiekink, 2007a-c).

Compound (I) features an Ag cation in a general position, two half 3-pyridinealdazine molecules, each disposed about a centre of inversion, an hexafluorophosphate anion and an acetonitrile solvent molecule, each in general positions (Fig. 1 & Table 1). The 3-pyridinealdazine molecule is bidentate bridging leading to a zigzag chain with a linear N2 coordination geometry for Ag.

The chains thus formed are linked via weakly bridging acetonitrile molecules with Ag···N5 and N5···Agi of 2.800 (3) and 2.826 (2) Å, respectively, as well as Ag···Agi interactions of 3.2590 (15) Å for (i): -x, 2 - y, -z. The topology of the resulting layer in the ac plane resembles a brick wall (Fig. 2).

The layers stack along the b axis and are interspersed by layers of PF6 anions. Various C—H···N and F interactions consolidate the structure (Fig. 3 & Table 2).

The zigzag topology found for the [Ag(C12H10N4)]n chain in (I) has precedents in the perchlorate, tetrafluoroborate salts (each as acetonitrile solvates) (Kennedy et al., 2005), and the methansulfonate salt (Broker & Tiekink, 2007c).

For related polymeric silver salts containing the 3-pyridinealdazine ligand, see: Kennedy et al. (2005); Broker & Tiekink (2007c). For related literature, see: Broker & Tiekink (2007a,b).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of (I) expanded to show the polymeric connectivity. Displacement ellipsoids at the 70% probability level (arbitrary spheres for the H atoms). Symmetry operations (i): 1 - x, 2 - y, 1 - z, and (ii): -x, 2 - y, -1 - z.
[Figure 2] Fig. 2. View of the layers in (I) viewed down the b axis highlighting the brick wall topology. Weak Ag···N interactions involving the acetonitrile molecules are shown as dashed bonds. Colour code: orange (silver), yellow (sulfur), red (oxygen), blue (nitrogen), grey (carbon) and green (hydrogen).
[Figure 3] Fig. 3. View of the unit-cell contents of (I) highlighting the stacking of layers. Weak Ag···N interactions involving the acetonitrile molecules are shown as dashed bonds. Colour code as for Fig. 2.
catena-Poly[silver(I)-µ-1,4-di-3-pyridyl-2,3-diaza-1,3-butadiene hexafluoridophosphate–acetonitrile (1/1)] top
Crystal data top
[Ag(C12H10N4)]PF6·C2H3NZ = 2
Mr = 504.13F(000) = 496
Triclinic, P1Dx = 1.962 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 7.917 (3) ÅCell parameters from 3181 reflections
b = 10.416 (3) Åθ = 2.7–30.5°
c = 11.357 (5) ŵ = 1.35 mm1
α = 75.58 (5)°T = 98 K
β = 70.66 (3)°Prism, yellow
γ = 81.11 (4)°0.30 × 0.20 × 0.10 mm
V = 853.2 (5) Å3
Data collection top
Rigaku AFC12κ/SATURN724
diffractometer
3508 independent reflections
Radiation source: fine-focus sealed tube3404 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω scansθmax = 26.5°, θmin = 2.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.406, Tmax = 1.000k = 1213
9571 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0287P)2 + 0.7535P]
where P = (Fo2 + 2Fc2)/3
3508 reflections(Δ/σ)max = 0.002
244 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Ag(C12H10N4)]PF6·C2H3Nγ = 81.11 (4)°
Mr = 504.13V = 853.2 (5) Å3
Triclinic, P1Z = 2
a = 7.917 (3) ÅMo Kα radiation
b = 10.416 (3) ŵ = 1.35 mm1
c = 11.357 (5) ÅT = 98 K
α = 75.58 (5)°0.30 × 0.20 × 0.10 mm
β = 70.66 (3)°
Data collection top
Rigaku AFC12κ/SATURN724
diffractometer
3508 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3404 reflections with I > 2σ(I)
Tmin = 0.406, Tmax = 1.000Rint = 0.019
9571 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.061H-atom parameters constrained
S = 1.12Δρmax = 0.58 e Å3
3508 reflectionsΔρmin = 0.42 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag0.19529 (2)0.921735 (16)0.001479 (15)0.02331 (7)
P10.35231 (8)0.57251 (5)0.27956 (5)0.02040 (12)
F10.2394 (2)0.68371 (14)0.20476 (16)0.0373 (4)
F20.4462 (2)0.51518 (15)0.15379 (14)0.0373 (3)
F30.1968 (2)0.47507 (15)0.32092 (16)0.0406 (4)
F40.2591 (2)0.63135 (17)0.40388 (15)0.0432 (4)
F50.46592 (19)0.46138 (14)0.35278 (14)0.0344 (3)
F60.50926 (19)0.66944 (14)0.23800 (14)0.0329 (3)
N10.2938 (2)1.03785 (17)0.09097 (16)0.0170 (3)
N20.4846 (2)1.04341 (17)0.44581 (16)0.0185 (4)
N30.1510 (2)0.79723 (18)0.11309 (17)0.0198 (4)
N40.0213 (2)0.97670 (19)0.44279 (17)0.0219 (4)
N50.1325 (3)0.84620 (19)0.17805 (19)0.0257 (4)
C10.3153 (3)1.1678 (2)0.0438 (2)0.0198 (4)
H10.28881.20830.03350.024*
C20.3746 (3)1.2454 (2)0.1027 (2)0.0205 (4)
H20.38731.33730.06630.025*
C30.4149 (3)1.1887 (2)0.2139 (2)0.0186 (4)
H30.45351.24060.25680.022*
C40.3977 (3)1.0527 (2)0.26239 (19)0.0154 (4)
C50.3354 (3)0.9823 (2)0.19818 (19)0.0168 (4)
H50.32180.89010.23220.020*
C60.4383 (3)0.9820 (2)0.37887 (19)0.0168 (4)
H60.43010.88850.40540.020*
C70.1646 (3)0.6635 (2)0.0804 (2)0.0246 (5)
H70.18880.62180.00250.030*
C80.1449 (3)0.5847 (2)0.1553 (2)0.0269 (5)
H80.15620.49060.12940.032*
C90.1085 (3)0.6436 (2)0.2681 (2)0.0246 (5)
H90.09500.59100.32130.030*
C100.0921 (3)0.7817 (2)0.3023 (2)0.0201 (4)
C110.1164 (3)0.8541 (2)0.2224 (2)0.0192 (4)
H110.10790.94840.24680.023*
C120.0484 (3)0.8502 (2)0.4185 (2)0.0221 (4)
H120.04020.80080.47610.027*
C130.1674 (3)0.7765 (2)0.2742 (2)0.0204 (4)
C140.2150 (3)0.6882 (2)0.3989 (2)0.0267 (5)
H14A0.26940.74070.46470.040*
H14B0.10680.63640.41370.040*
H14C0.30090.62780.40270.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag0.02641 (11)0.02883 (11)0.02023 (10)0.00394 (7)0.01124 (7)0.00841 (7)
P10.0219 (3)0.0189 (3)0.0211 (3)0.0042 (2)0.0069 (2)0.0036 (2)
F10.0384 (8)0.0276 (7)0.0514 (10)0.0002 (6)0.0285 (7)0.0002 (7)
F20.0498 (9)0.0342 (8)0.0282 (8)0.0041 (7)0.0077 (7)0.0122 (6)
F30.0327 (8)0.0354 (8)0.0526 (10)0.0166 (6)0.0124 (7)0.0001 (7)
F40.0445 (9)0.0501 (10)0.0345 (9)0.0053 (7)0.0059 (7)0.0223 (7)
F50.0321 (8)0.0320 (8)0.0303 (8)0.0008 (6)0.0093 (6)0.0064 (6)
F60.0310 (8)0.0290 (7)0.0415 (8)0.0117 (6)0.0157 (6)0.0002 (6)
N10.0176 (9)0.0201 (9)0.0137 (8)0.0017 (7)0.0056 (7)0.0030 (7)
N20.0208 (9)0.0203 (9)0.0146 (8)0.0032 (7)0.0075 (7)0.0004 (7)
N30.0189 (9)0.0240 (9)0.0175 (9)0.0042 (7)0.0057 (7)0.0045 (7)
N40.0173 (9)0.0346 (11)0.0155 (9)0.0034 (7)0.0039 (7)0.0090 (8)
N50.0295 (11)0.0251 (10)0.0236 (10)0.0050 (8)0.0094 (8)0.0035 (8)
C10.0200 (10)0.0226 (10)0.0160 (10)0.0041 (8)0.0057 (8)0.0007 (8)
C20.0219 (11)0.0187 (10)0.0188 (10)0.0027 (8)0.0048 (8)0.0012 (8)
C30.0154 (10)0.0204 (10)0.0203 (10)0.0034 (8)0.0044 (8)0.0054 (8)
C40.0121 (9)0.0202 (10)0.0136 (9)0.0002 (7)0.0030 (7)0.0047 (8)
C50.0168 (10)0.0163 (9)0.0166 (10)0.0004 (7)0.0046 (8)0.0033 (8)
C60.0157 (10)0.0187 (10)0.0156 (10)0.0014 (7)0.0047 (8)0.0030 (8)
C70.0206 (11)0.0275 (11)0.0251 (11)0.0037 (9)0.0079 (9)0.0021 (9)
C80.0240 (12)0.0243 (11)0.0330 (13)0.0006 (9)0.0094 (10)0.0071 (10)
C90.0189 (11)0.0286 (11)0.0313 (12)0.0019 (8)0.0073 (9)0.0157 (10)
C100.0123 (10)0.0293 (11)0.0187 (10)0.0030 (8)0.0020 (8)0.0081 (9)
C110.0147 (10)0.0241 (10)0.0187 (10)0.0040 (8)0.0032 (8)0.0056 (8)
C120.0168 (10)0.0333 (12)0.0191 (10)0.0023 (8)0.0041 (8)0.0123 (9)
C130.0195 (10)0.0216 (10)0.0225 (11)0.0014 (8)0.0080 (8)0.0070 (9)
C140.0327 (13)0.0262 (12)0.0196 (11)0.0036 (9)0.0085 (9)0.0005 (9)
Geometric parameters (Å, º) top
Ag—N12.1538 (19)C2—H20.9500
Ag—N32.160 (2)C3—C41.397 (3)
Ag—N52.800 (2)C3—H30.9500
Ag—Agi3.2590 (15)C4—C51.389 (3)
P1—F41.5858 (17)C4—C61.455 (3)
P1—F31.5914 (16)C5—H50.9500
P1—F21.5917 (17)C6—H60.9500
P1—F51.5919 (16)C7—C81.377 (3)
P1—F61.5964 (16)C7—H70.9500
P1—F11.5984 (16)C8—C91.377 (3)
N1—C51.335 (3)C8—H80.9500
N1—C11.341 (3)C9—C101.391 (3)
N2—C61.273 (3)C9—H90.9500
N2—N2ii1.403 (3)C10—C111.389 (3)
N3—C111.333 (3)C10—C121.459 (3)
N3—C71.346 (3)C11—H110.9500
N4—C121.276 (3)C12—H120.9500
N4—N4iii1.401 (4)C13—C141.448 (3)
N5—C131.124 (3)C14—H14A0.9800
C1—C21.384 (3)C14—H14B0.9800
C1—H10.9500C14—H14C0.9800
C2—C31.372 (3)
N1—Ag—N3168.86 (7)C2—C3—H3120.9
N1—Ag—N5103.25 (7)C4—C3—H3120.9
N3—Ag—N586.67 (7)C5—C4—C3118.59 (19)
N1—Ag—Agi101.63 (6)C5—C4—C6118.50 (18)
N3—Ag—Agi88.15 (6)C3—C4—C6122.90 (19)
N5—Ag—Agi54.97 (5)N1—C5—C4123.18 (19)
F4—P1—F390.61 (10)N1—C5—H5118.4
F4—P1—F2179.32 (9)C4—C5—H5118.4
F3—P1—F289.86 (10)N2—C6—C4121.01 (19)
F4—P1—F591.01 (10)N2—C6—H6119.5
F3—P1—F590.18 (9)C4—C6—H6119.5
F2—P1—F589.48 (9)N3—C7—C8122.6 (2)
F4—P1—F689.61 (10)N3—C7—H7118.7
F3—P1—F6179.63 (9)C8—C7—H7118.7
F2—P1—F689.93 (9)C9—C8—C7119.5 (2)
F5—P1—F689.52 (9)C9—C8—H8120.3
F4—P1—F189.54 (10)C7—C8—H8120.3
F3—P1—F189.92 (9)C8—C9—C10118.5 (2)
F2—P1—F189.98 (10)C8—C9—H9120.7
F5—P1—F1179.44 (10)C10—C9—H9120.7
F6—P1—F190.38 (9)C11—C10—C9118.6 (2)
C5—N1—C1117.55 (18)C11—C10—C12120.2 (2)
C5—N1—Ag120.78 (14)C9—C10—C12121.2 (2)
C1—N1—Ag121.66 (14)N3—C11—C10123.0 (2)
C6—N2—N2ii111.5 (2)N3—C11—H11118.5
C11—N3—C7117.88 (19)C10—C11—H11118.5
C11—N3—Ag119.05 (15)N4—C12—C10119.9 (2)
C7—N3—Ag123.00 (15)N4—C12—H12120.1
C12—N4—N4iii111.3 (2)C10—C12—H12120.1
C13—N5—Ag132.65 (18)N5—C13—C14179.0 (3)
N1—C1—C2122.9 (2)C13—C14—H14A109.5
N1—C1—H1118.6C13—C14—H14B109.5
C2—C1—H1118.6H14A—C14—H14B109.5
C3—C2—C1119.6 (2)C13—C14—H14C109.5
C3—C2—H2120.2H14A—C14—H14C109.5
C1—C2—H2120.2H14B—C14—H14C109.5
C2—C3—C4118.2 (2)
N3—Ag—N1—C588.2 (4)C1—N1—C5—C40.6 (3)
N5—Ag—N1—C564.29 (16)Ag—N1—C5—C4179.35 (15)
Agi—Ag—N1—C5120.67 (15)C3—C4—C5—N11.1 (3)
N3—Ag—N1—C191.9 (4)C6—C4—C5—N1179.73 (18)
N5—Ag—N1—C1115.62 (17)N2ii—N2—C6—C4179.41 (19)
Agi—Ag—N1—C159.24 (16)C5—C4—C6—N2175.40 (19)
N1—Ag—N3—C1195.7 (4)C3—C4—C6—N23.1 (3)
N5—Ag—N3—C11111.04 (16)C11—N3—C7—C80.2 (3)
Agi—Ag—N3—C1156.03 (15)Ag—N3—C7—C8176.72 (17)
N1—Ag—N3—C781.2 (4)N3—C7—C8—C90.4 (3)
N5—Ag—N3—C772.03 (18)C7—C8—C9—C100.3 (3)
Agi—Ag—N3—C7127.04 (17)C8—C9—C10—C111.2 (3)
N1—Ag—N5—C1369.2 (2)C8—C9—C10—C12178.1 (2)
N3—Ag—N5—C13105.7 (2)C7—N3—C11—C100.7 (3)
Agi—Ag—N5—C13164.3 (2)Ag—N3—C11—C10177.80 (15)
C5—N1—C1—C21.4 (3)C9—C10—C11—N31.4 (3)
Ag—N1—C1—C2178.55 (16)C12—C10—C11—N3177.89 (19)
N1—C1—C2—C30.4 (3)N4iii—N4—C12—C10179.1 (2)
C1—C2—C3—C41.3 (3)C11—C10—C12—N44.4 (3)
C2—C3—C4—C52.0 (3)C9—C10—C12—N4174.9 (2)
C2—C3—C4—C6179.45 (18)
Symmetry codes: (i) x, y+2, z; (ii) x+1, y+2, z+1; (iii) x, y+2, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F6iv0.952.503.182 (3)128
C1—H1···N5i0.952.563.336 (3)138
C2—H2···F2v0.952.483.174 (3)130
C5—H5···F10.952.463.291 (3)146
C5—H5···F60.952.533.318 (3)140
C9—H9···F3vi0.952.513.160 (3)126
C11—H11···N5i0.952.513.311 (3)142
Symmetry codes: (i) x, y+2, z; (iv) x+1, y+2, z; (v) x, y+1, z; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag(C12H10N4)]PF6·C2H3N
Mr504.13
Crystal system, space groupTriclinic, P1
Temperature (K)98
a, b, c (Å)7.917 (3), 10.416 (3), 11.357 (5)
α, β, γ (°)75.58 (5), 70.66 (3), 81.11 (4)
V3)853.2 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.35
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerRigaku AFC12κ/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.406, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9571, 3508, 3404
Rint0.019
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.061, 1.12
No. of reflections3508
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.42

Computer programs: CrystalClear (Rigaku/MSC, 2005), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006).

Selected geometric parameters (Å, º) top
Ag—N12.1538 (19)Ag—N32.160 (2)
N1—Ag—N3168.86 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···F6i0.952.503.182 (3)128
C1—H1···N5ii0.952.563.336 (3)138
C2—H2···F2iii0.952.483.174 (3)130
C5—H5···F10.952.463.291 (3)146
C5—H5···F60.952.533.318 (3)140
C9—H9···F3iv0.952.513.160 (3)126
C11—H11···N5ii0.952.513.311 (3)142
Symmetry codes: (i) x+1, y+2, z; (ii) x, y+2, z; (iii) x, y+1, z; (iv) x, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds