Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Cu(C13H11Br2N2O)Cl], the CuII atom is four-coordinated by an N,N,O-tridentate 2,4-dibromo-6-(2-pyridylmethyl­amino­meth­yl)phenolate ligand and a chloride ion in a distorted square-planar arrangement. An N—H...O hydrogen bond helps to stabilize the struture.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807041669/hb2515sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807041669/hb2515Isup2.hkl
Contains datablock I

CCDC reference: 660173

Key indicators

  • Single-crystal X-ray study
  • T = 305 K
  • Mean [sigma](C-C) = 0.009 Å
  • R factor = 0.051
  • wR factor = 0.137
  • Data-to-parameter ratio = 18.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 9
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of N2 = ... S PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.03 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Copper(II) complexes with various organic ligands have been a subject of intense study because of their important biological properties (Solomon et al., 1996). Here, we report the synthesis and structure of the new title complex, Cu(dmp)Cl, (I), where dmp is 2,4-dibromo-6((pyridine-2-ylmethylamino)methy)phenol.

Selected bond lengths are listed in Table 1. The CuII atom is four-coordinated by one pyridine N atom, one amine N atom and one phenolate O atom from the ligand and one chloride ion in a distorted square-planar arangement (Fig. 1). The metal to ligand-atom distances in (I) are similar to the ones found in bis[2,4-dibromo-6((pyridnine-2-ylmethylamino)methy) phenolato]bis[nitratocopper(II)] (Ma et al., 2007).

An N—H···O hydrogen bond (Table 2) helps to stabilize the packing in (I).

Related literature top

For background, see: Solomon et al. (1996); Ma et al. (2007).

Experimental top

2,4-Dibromo-6-((pyridine-2-ylmethylamino)methyl)phenol (0.372 g, 1 mmol) was added to a methanol solution (20 ml) of CuCl2·2H2O (0.170 g, 1 mmol) with stirring. The resulting solution was left to stand at room temperture and blue blocks of (I) were obtained after several days.

Refinement top

All H-atoms bound to carbon were refined using a riding model [C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C)]. The amino H atom was located in a difference map and it sposition was freely refined with Uiso(H) = 1.2 Ueq(N).

Structure description top

Copper(II) complexes with various organic ligands have been a subject of intense study because of their important biological properties (Solomon et al., 1996). Here, we report the synthesis and structure of the new title complex, Cu(dmp)Cl, (I), where dmp is 2,4-dibromo-6((pyridine-2-ylmethylamino)methy)phenol.

Selected bond lengths are listed in Table 1. The CuII atom is four-coordinated by one pyridine N atom, one amine N atom and one phenolate O atom from the ligand and one chloride ion in a distorted square-planar arangement (Fig. 1). The metal to ligand-atom distances in (I) are similar to the ones found in bis[2,4-dibromo-6((pyridnine-2-ylmethylamino)methy) phenolato]bis[nitratocopper(II)] (Ma et al., 2007).

An N—H···O hydrogen bond (Table 2) helps to stabilize the packing in (I).

For background, see: Solomon et al. (1996); Ma et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for the H atoms).
Chlorido[2,4-dibromo-6-(2-pyridylmethylaminomethyl)phenolato]copper(II) top
Crystal data top
[Cu(C13H11Br2N2O)Cl]F(000) = 908
Mr = 470.05Dx = 2.056 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8947 reflections
a = 13.447 (4) Åθ = 2.0–28.2°
b = 16.628 (5) ŵ = 6.87 mm1
c = 6.881 (2) ÅT = 305 K
β = 99.179 (4)°Block, blue
V = 1518.8 (8) Å30.32 × 0.26 × 0.20 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
3459 independent reflections
Radiation source: fine-focus sealed tube2044 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
ω scansθmax = 28.2°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1711
Tmin = 0.133, Tmax = 0.251k = 2120
8786 measured reflectionsl = 98
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: difmap and geom
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0706P)2]
where P = (Fo2 + 2Fc2)/3
3459 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 1.04 e Å3
1 restraintΔρmin = 0.83 e Å3
Crystal data top
[Cu(C13H11Br2N2O)Cl]V = 1518.8 (8) Å3
Mr = 470.05Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.447 (4) ŵ = 6.87 mm1
b = 16.628 (5) ÅT = 305 K
c = 6.881 (2) Å0.32 × 0.26 × 0.20 mm
β = 99.179 (4)°
Data collection top
Bruker APEX CCD
diffractometer
3459 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2044 reflections with I > 2σ(I)
Tmin = 0.133, Tmax = 0.251Rint = 0.073
8786 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0511 restraint
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 1.04 e Å3
3459 reflectionsΔρmin = 0.83 e Å3
184 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0249 (5)0.1997 (4)0.2698 (10)0.0567 (18)
H10.03480.25490.27690.068*
C20.1045 (5)0.1518 (5)0.1881 (12)0.071 (2)
H20.16670.17460.14020.085*
C30.0908 (5)0.0702 (4)0.1784 (10)0.064 (2)
H30.14360.03700.12390.077*
C40.0020 (5)0.0386 (4)0.2504 (10)0.0555 (17)
H40.01310.01650.24530.067*
C50.0794 (4)0.0900 (3)0.3312 (9)0.0433 (14)
C60.1807 (4)0.0582 (3)0.4151 (10)0.0517 (16)
H6A0.17750.03240.54050.062*
H6B0.20100.01800.32690.062*
C70.3373 (4)0.1065 (3)0.6124 (9)0.0423 (14)
H7A0.36420.05300.59770.051*
H7B0.30930.10740.73380.051*
C80.4210 (4)0.1665 (3)0.6255 (8)0.0376 (13)
C90.5188 (4)0.1412 (3)0.6364 (8)0.0388 (13)
H90.53260.08640.63380.047*
C100.5971 (4)0.1957 (4)0.6513 (9)0.0442 (14)
C110.5778 (4)0.2781 (4)0.6515 (9)0.0460 (15)
H110.63030.31500.65980.055*
C120.4791 (4)0.3039 (3)0.6390 (8)0.0381 (13)
C130.3969 (4)0.2501 (3)0.6281 (8)0.0358 (13)
N10.0656 (3)0.1695 (3)0.3389 (7)0.0453 (12)
N20.2557 (3)0.1231 (3)0.4435 (7)0.0372 (11)
O10.3038 (3)0.2762 (2)0.6237 (6)0.0431 (10)
Cu10.19000 (5)0.23063 (4)0.45485 (11)0.0392 (2)
Br10.45266 (5)0.41577 (3)0.63413 (9)0.0508 (2)
Br20.73138 (5)0.15965 (5)0.66154 (15)0.0798 (3)
Cl10.12562 (12)0.35288 (9)0.3686 (3)0.0528 (4)
H2N0.291 (4)0.133 (4)0.337 (8)0.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (4)0.049 (4)0.073 (5)0.002 (3)0.002 (3)0.009 (3)
C20.043 (4)0.069 (6)0.093 (6)0.002 (3)0.009 (4)0.003 (4)
C30.061 (4)0.055 (5)0.072 (5)0.019 (3)0.003 (4)0.002 (4)
C40.053 (4)0.045 (4)0.066 (5)0.012 (3)0.002 (3)0.005 (3)
C50.056 (4)0.032 (3)0.041 (4)0.005 (3)0.005 (3)0.004 (3)
C60.054 (4)0.024 (3)0.075 (5)0.008 (3)0.004 (3)0.005 (3)
C70.050 (3)0.027 (3)0.050 (4)0.003 (2)0.007 (3)0.002 (3)
C80.055 (3)0.022 (3)0.034 (3)0.002 (2)0.000 (3)0.001 (2)
C90.041 (3)0.033 (3)0.038 (3)0.004 (2)0.007 (2)0.001 (2)
C100.046 (3)0.039 (4)0.046 (4)0.008 (3)0.000 (3)0.001 (3)
C110.050 (4)0.042 (4)0.045 (4)0.010 (3)0.003 (3)0.005 (3)
C120.049 (3)0.024 (3)0.039 (3)0.001 (2)0.002 (3)0.001 (2)
C130.045 (3)0.029 (3)0.032 (3)0.002 (2)0.004 (2)0.004 (2)
N10.046 (3)0.039 (3)0.050 (3)0.003 (2)0.006 (2)0.006 (2)
N20.038 (3)0.023 (2)0.049 (3)0.0042 (19)0.002 (2)0.002 (2)
O10.045 (2)0.028 (2)0.053 (3)0.0031 (16)0.0033 (18)0.0094 (18)
Cu10.0457 (4)0.0235 (4)0.0461 (5)0.0024 (3)0.0001 (3)0.0024 (3)
Br10.0744 (5)0.0233 (3)0.0519 (4)0.0046 (3)0.0015 (3)0.0005 (3)
Br20.0459 (4)0.0605 (5)0.1286 (8)0.0074 (3)0.0000 (4)0.0052 (5)
Cl10.0572 (9)0.0307 (8)0.0698 (11)0.0100 (6)0.0079 (8)0.0083 (7)
Geometric parameters (Å, º) top
C1—N11.331 (7)C7—H7B0.9700
C1—C21.379 (9)C8—C91.372 (7)
C1—H10.9300C8—C131.428 (7)
C2—C31.372 (9)C9—C101.380 (8)
C2—H20.9300C9—H90.9300
C3—C41.373 (9)C10—C111.395 (8)
C3—H30.9300C10—Br21.893 (6)
C4—C51.392 (8)C11—C121.385 (8)
C4—H40.9300C11—H110.9300
C5—N11.338 (7)C12—C131.414 (8)
C5—C61.490 (8)C12—Br11.893 (5)
C6—N21.469 (7)C13—O11.321 (6)
C6—H6A0.9700N2—H2N0.94 (4)
C6—H6B0.9700Cu1—O11.923 (4)
C7—N21.492 (7)Cu1—N22.001 (4)
C7—C81.496 (7)Cu1—N12.011 (5)
C7—H7A0.9700Cu1—Cl12.2517 (16)
N1—C1—C2122.3 (6)C8—C9—H9119.5
N1—C1—H1118.9C10—C9—H9119.5
C2—C1—H1118.9C9—C10—C11120.4 (5)
C3—C2—C1119.3 (6)C9—C10—Br2120.5 (4)
C3—C2—H2120.4C11—C10—Br2119.1 (4)
C1—C2—H2120.4C12—C11—C10118.8 (5)
C2—C3—C4118.9 (6)C12—C11—H11120.6
C2—C3—H3120.6C10—C11—H11120.6
C4—C3—H3120.6C11—C12—C13122.7 (5)
C3—C4—C5119.2 (6)C11—C12—Br1118.8 (4)
C3—C4—H4120.4C13—C12—Br1118.6 (4)
C5—C4—H4120.4O1—C13—C12121.5 (5)
N1—C5—C4121.6 (6)O1—C13—C8122.4 (5)
N1—C5—C6117.4 (5)C12—C13—C8116.1 (5)
C4—C5—C6121.0 (6)C1—N1—C5118.9 (5)
N2—C6—C5110.9 (5)C1—N1—Cu1127.4 (4)
N2—C6—H6A109.5C5—N1—Cu1113.8 (4)
C5—C6—H6A109.5C6—N2—C7111.8 (4)
N2—C6—H6B109.5C6—N2—Cu1111.3 (4)
C5—C6—H6B109.5C7—N2—Cu1114.2 (3)
H6A—C6—H6B108.1C6—N2—H2N116 (4)
N2—C7—C8112.1 (5)C7—N2—H2N104 (4)
N2—C7—H7A109.2Cu1—N2—H2N99 (4)
C8—C7—H7A109.2C13—O1—Cu1123.0 (3)
N2—C7—H7B109.2O1—Cu1—N293.56 (16)
C8—C7—H7B109.2O1—Cu1—N1166.0 (2)
H7A—C7—H7B107.9N2—Cu1—N182.99 (19)
C9—C8—C13121.0 (5)O1—Cu1—Cl192.22 (12)
C9—C8—C7120.2 (5)N2—Cu1—Cl1161.76 (15)
C13—C8—C7118.8 (5)N1—Cu1—Cl195.21 (15)
C8—C9—C10121.1 (5)
N1—C1—C2—C30.5 (12)C2—C1—N1—Cu1178.1 (6)
C1—C2—C3—C40.0 (12)C4—C5—N1—C10.9 (10)
C2—C3—C4—C50.1 (11)C6—C5—N1—C1178.3 (6)
C3—C4—C5—N10.5 (10)C4—C5—N1—Cu1178.2 (5)
C3—C4—C5—C6178.6 (6)C6—C5—N1—Cu12.6 (7)
N1—C5—C6—N215.6 (8)C5—C6—N2—C7149.8 (5)
C4—C5—C6—N2165.2 (6)C5—C6—N2—Cu120.7 (7)
N2—C7—C8—C9127.8 (6)C8—C7—N2—C6172.3 (5)
N2—C7—C8—C1352.8 (7)C8—C7—N2—Cu160.2 (5)
C13—C8—C9—C100.3 (9)C12—C13—O1—Cu1138.6 (4)
C7—C8—C9—C10179.1 (5)C8—C13—O1—Cu142.4 (7)
C8—C9—C10—C111.3 (9)C13—O1—Cu1—N226.5 (4)
C8—C9—C10—Br2178.9 (4)C13—O1—Cu1—N1101.6 (8)
C9—C10—C11—C120.8 (9)C13—O1—Cu1—Cl1136.2 (4)
Br2—C10—C11—C12178.4 (4)C6—N2—Cu1—O1150.7 (4)
C10—C11—C12—C130.7 (9)C7—N2—Cu1—O122.9 (4)
C10—C11—C12—Br1178.8 (4)C6—N2—Cu1—N115.7 (4)
C11—C12—C13—O1177.4 (5)C7—N2—Cu1—N1143.5 (4)
Br1—C12—C13—O13.1 (7)C6—N2—Cu1—Cl1101.1 (5)
C11—C12—C13—C81.6 (8)C7—N2—Cu1—Cl1131.1 (4)
Br1—C12—C13—C8177.9 (4)C1—N1—Cu1—O1112.1 (8)
C9—C8—C13—O1177.9 (5)C5—N1—Cu1—O168.8 (9)
C7—C8—C13—O11.5 (8)C1—N1—Cu1—N2171.6 (6)
C9—C8—C13—C121.1 (8)C5—N1—Cu1—N27.5 (4)
C7—C8—C13—C12179.5 (5)C1—N1—Cu1—Cl19.8 (6)
C2—C1—N1—C50.9 (10)C5—N1—Cu1—Cl1169.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.94 (4)2.14 (5)2.918 (6)139 (5)
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C13H11Br2N2O)Cl]
Mr470.05
Crystal system, space groupMonoclinic, P21/c
Temperature (K)305
a, b, c (Å)13.447 (4), 16.628 (5), 6.881 (2)
β (°) 99.179 (4)
V3)1518.8 (8)
Z4
Radiation typeMo Kα
µ (mm1)6.87
Crystal size (mm)0.32 × 0.26 × 0.20
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.133, 0.251
No. of measured, independent and
observed [I > 2σ(I)] reflections
8786, 3459, 2044
Rint0.073
(sin θ/λ)max1)0.664
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.137, 0.94
No. of reflections3459
No. of parameters184
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.04, 0.83

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990).

Selected bond lengths (Å) top
Cu1—O11.923 (4)Cu1—N12.011 (5)
Cu1—N22.001 (4)Cu1—Cl12.2517 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···O1i0.94 (4)2.14 (5)2.918 (6)139 (5)
Symmetry code: (i) x, y+1/2, z1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds