Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The asymmetric unit of the title compound, [Ag2(C12H10N4)2](CH3SO3)2, comprises a dinuclear dication, with each Ag atom in an approximate T-shaped AgN3 geometry, and two methyl­sulfonate anions. Weak connections between the ions are afforded by long (>2.6 Å) Ag...O contacts. The crystal structure comprises zigzag layers connected by π–π inter­actions [centroid-to-centroid separation = 3.667 (3) Å]. The layers are stabilized by C—H...O inter­actions between the anions and cations as well as between anions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807039980/hb2507sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807039980/hb2507Isup2.hkl
Contains datablock I

CCDC reference: 660126

Key indicators

  • Single-crystal X-ray study
  • T = 120 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.029
  • wR factor = 0.067
  • Data-to-parameter ratio = 14.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.88
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.883 Tmax scaled 0.883 Tmin scaled 0.710
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The dication in the title compound [Ag(2—PA)]2[MeSO3]2 (I), Fig. 1, (PA = 2-pyridinealdazine) adopts a ring structure in which the two Ag atoms are bridged by two 2-PA molecules. Each 2-PA ligand is tridentate, forming a single bond to one Ag atom and chelating the other. Within the chelate, the Ag—Nazo bond distance is significantly shorter than the Ag—Npyridine bond (Table 1). The coordination geometry around each Ag atom is T-shaped.

Each of the [MeSO3]- anions forms two close contacts with Ag, i.e. Ag1···O1, O4 = 2.620 (2) and 2.902 (2) Å and Ag2···O2, O5 = 2.635 (2) and 2.699 (3) Å.

The [Ag(2—PA)]2 chelate structure of (I) has two precedents in the literature, namely in the [CF3SO3]- (Hamblin et al., 2002) and [NO3]- salts (Kennedy et al., 2005) for which simlilar ring structures have been reported. In a third structure, i.e. the [BF4]- salt, characterized as an acetonitrile solvate, a polymeric structure is observed due to a rotation of one of the pyridine rings (Guo et al., 2002); in this case, the 2-PA ligand is tetradentate forming two chelate rings.

The global crystal packing in (I) is based on the stacking of zigzag layers. A number of C—H···O interactions cooperate to stabilize the layers (Fig. 2). All the sulfonate-O atoms accept one or more C—H···O interactions (Table 2) arising from both cation···anion and anion···anion contacts. Connections between layers are of the type π···π with the shortest distance of 3.667 (3) Å occurring between the ring centroids of (N4, C8–C12) and (N5, C13–C17); symmetry operation: -x, 1 - y, 1 - z.

Related literature top

For related dinuclear structures, see: Hamblin et al. (2002); Kennedy et al. (2005). For a polymeric analogue, see Guo et al. (2002).

Experimental top

Ag(MeSO3) (Aldrich, 0.05 g, 0.25 mmol) was dissolved in CH3CN (20 ml) and layered on top of a CH2Cl2 solution (20 ml) containing (0.05 g, 0.25 mmol) of 2-pyridinealdazine (Aldrich). After three days, colourless prisims of (I) were observed at the interface between the two layers; m.p. 491–493 K.

Refinement top

All the H atoms were included in the riding-model approximation, with C—H = 0.95–0.98 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C).

Structure description top

The dication in the title compound [Ag(2—PA)]2[MeSO3]2 (I), Fig. 1, (PA = 2-pyridinealdazine) adopts a ring structure in which the two Ag atoms are bridged by two 2-PA molecules. Each 2-PA ligand is tridentate, forming a single bond to one Ag atom and chelating the other. Within the chelate, the Ag—Nazo bond distance is significantly shorter than the Ag—Npyridine bond (Table 1). The coordination geometry around each Ag atom is T-shaped.

Each of the [MeSO3]- anions forms two close contacts with Ag, i.e. Ag1···O1, O4 = 2.620 (2) and 2.902 (2) Å and Ag2···O2, O5 = 2.635 (2) and 2.699 (3) Å.

The [Ag(2—PA)]2 chelate structure of (I) has two precedents in the literature, namely in the [CF3SO3]- (Hamblin et al., 2002) and [NO3]- salts (Kennedy et al., 2005) for which simlilar ring structures have been reported. In a third structure, i.e. the [BF4]- salt, characterized as an acetonitrile solvate, a polymeric structure is observed due to a rotation of one of the pyridine rings (Guo et al., 2002); in this case, the 2-PA ligand is tetradentate forming two chelate rings.

The global crystal packing in (I) is based on the stacking of zigzag layers. A number of C—H···O interactions cooperate to stabilize the layers (Fig. 2). All the sulfonate-O atoms accept one or more C—H···O interactions (Table 2) arising from both cation···anion and anion···anion contacts. Connections between layers are of the type π···π with the shortest distance of 3.667 (3) Å occurring between the ring centroids of (N4, C8–C12) and (N5, C13–C17); symmetry operation: -x, 1 - y, 1 - z.

For related dinuclear structures, see: Hamblin et al. (2002); Kennedy et al. (2005). For a polymeric analogue, see Guo et al. (2002).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing displacement ellipsoids at the 70% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. View of a layer in (I) highlighting the C—H···O hydrogen bonds, shown as orange-dashed lines. Colour code: orange (silver), yellow (sulfur), red (oxygen), blue (nitrogen), grey (carbon) and green (hydrogen).
[Figure 3] Fig. 3. View of the crystal packing in (I) down the c axis highlighting the layer arrangement. The N—H···O hydrogen bonds are shown as orange-dashed lines. Colour code as for Fig. 2.
Bis(µ-pyridine-1-carbaldehyde azine-κ2N,N':κ2N'',N''')disilver(I) bis(methanesulfonate) top
Crystal data top
[Ag2(C12H10N4)2](CH3SO3)2F(000) = 1648
Mr = 826.40Dx = 1.901 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71070 Å
Hall symbol: -P 2ybcCell parameters from 5950 reflections
a = 9.017 (5) Åθ = 1.6–30.2°
b = 19.115 (5) ŵ = 1.56 mm1
c = 17.397 (7) ÅT = 120 K
β = 105.605 (16)°Prism, colourless
V = 2888 (2) Å30.18 × 0.10 × 0.08 mm
Z = 4
Data collection top
Rigaku AFC12κ/SATURN724
diffractometer
5668 independent reflections
Radiation source: fine-focus sealed tube5514 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1111
Tmin = 0.804, Tmax = 1.000k = 2123
30221 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0264P)2 + 5.0008P]
where P = (Fo2 + 2Fc2)/3
5668 reflections(Δ/σ)max = 0.003
397 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Ag2(C12H10N4)2](CH3SO3)2V = 2888 (2) Å3
Mr = 826.40Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.017 (5) ŵ = 1.56 mm1
b = 19.115 (5) ÅT = 120 K
c = 17.397 (7) Å0.18 × 0.10 × 0.08 mm
β = 105.605 (16)°
Data collection top
Rigaku AFC12κ/SATURN724
diffractometer
5668 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5514 reflections with I > 2σ(I)
Tmin = 0.804, Tmax = 1.000Rint = 0.030
30221 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.10Δρmax = 0.93 e Å3
5668 reflectionsΔρmin = 0.67 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.36970 (2)0.431855 (10)0.877448 (11)0.01905 (7)
Ag20.12996 (2)0.555838 (10)0.637545 (12)0.01861 (7)
S10.00614 (7)0.38534 (3)0.72639 (4)0.01684 (13)
S20.50982 (8)0.59359 (3)0.75240 (4)0.01902 (14)
O10.0808 (2)0.40311 (11)0.80742 (11)0.0250 (4)
O20.0099 (2)0.43659 (10)0.66748 (12)0.0254 (4)
O30.0223 (3)0.31478 (10)0.70343 (12)0.0327 (5)
O40.4588 (2)0.56243 (10)0.81728 (11)0.0234 (4)
O50.3881 (3)0.63161 (12)0.69664 (14)0.0403 (6)
O60.5892 (3)0.54368 (12)0.71478 (14)0.0391 (6)
N10.2639 (2)0.50211 (11)0.95097 (12)0.0171 (4)
N20.0415 (3)0.61510 (12)0.80323 (12)0.0201 (5)
N30.0258 (2)0.62142 (11)0.72049 (12)0.0175 (4)
N40.0242 (2)0.65172 (11)0.55969 (13)0.0167 (4)
N50.2546 (2)0.48734 (11)0.57028 (12)0.0162 (4)
N60.4392 (2)0.36098 (11)0.71502 (12)0.0163 (4)
N70.4598 (2)0.35786 (11)0.79848 (12)0.0159 (4)
N80.5297 (2)0.34012 (11)0.96246 (13)0.0185 (4)
C10.3001 (3)0.49111 (13)1.03027 (15)0.0187 (5)
H10.37720.45751.05260.022*
C20.2305 (3)0.52640 (14)1.08101 (15)0.0212 (5)
H20.25910.51681.13660.025*
C30.1183 (3)0.57609 (14)1.04902 (16)0.0212 (6)
H30.06700.60061.08190.025*
C40.0833 (3)0.58891 (14)0.96759 (15)0.0196 (5)
H40.00920.62350.94420.024*
C50.1567 (3)0.55113 (13)0.92028 (15)0.0154 (5)
C60.1246 (3)0.56322 (13)0.83390 (15)0.0167 (5)
H60.16540.53270.80150.020*
C70.0379 (3)0.67938 (13)0.69345 (15)0.0176 (5)
H70.06550.71150.72890.021*
C80.0691 (3)0.69731 (13)0.60850 (15)0.0168 (5)
C90.1457 (3)0.75943 (13)0.58199 (15)0.0189 (5)
H90.17510.79020.61820.023*
C100.1784 (3)0.77554 (14)0.50134 (16)0.0210 (5)
H100.22970.81790.48140.025*
C110.1347 (3)0.72881 (14)0.45026 (16)0.0195 (5)
H110.15620.73830.39480.023*
C120.0587 (3)0.66767 (13)0.48238 (15)0.0173 (5)
H120.02990.63560.44720.021*
C130.2301 (3)0.50199 (13)0.49181 (15)0.0187 (5)
H130.16200.53920.47000.022*
C140.2983 (3)0.46610 (14)0.44149 (15)0.0199 (5)
H140.27890.47910.38700.024*
C150.3956 (3)0.41065 (14)0.47201 (15)0.0200 (5)
H150.44530.38530.43910.024*
C160.4185 (3)0.39312 (14)0.55176 (15)0.0187 (5)
H160.48230.35460.57390.022*
C170.3474 (3)0.43242 (13)0.59903 (15)0.0159 (5)
C180.3710 (3)0.41726 (13)0.68453 (15)0.0156 (5)
H180.33540.44940.71720.019*
C190.5368 (3)0.30401 (13)0.83006 (15)0.0167 (5)
H190.56700.27060.79680.020*
C200.5797 (3)0.29291 (13)0.91728 (15)0.0168 (5)
C210.6740 (3)0.23671 (13)0.94907 (15)0.0187 (5)
H210.70570.20410.91540.022*
C220.7208 (3)0.22950 (14)1.03204 (16)0.0207 (5)
H220.78540.19181.05590.025*
C230.6721 (3)0.27789 (14)1.07885 (15)0.0200 (5)
H230.70360.27431.13540.024*
C240.5766 (3)0.33171 (14)1.04198 (16)0.0203 (5)
H240.54250.36441.07460.024*
C250.2005 (3)0.3882 (2)0.72741 (18)0.0348 (7)
H25A0.22530.43520.74270.052*
H25B0.21830.35410.76600.052*
H25C0.26610.37700.67410.052*
C260.6481 (3)0.65761 (15)0.79671 (18)0.0273 (6)
H26A0.73440.63520.83540.041*
H26B0.60080.69250.82390.041*
H26C0.68590.68060.75530.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.02153 (12)0.01992 (11)0.01598 (11)0.00613 (7)0.00552 (8)0.00123 (7)
Ag20.02197 (12)0.01738 (11)0.01718 (11)0.00465 (7)0.00650 (8)0.00088 (7)
S10.0187 (3)0.0178 (3)0.0146 (3)0.0006 (2)0.0054 (2)0.0008 (2)
S20.0215 (3)0.0219 (3)0.0128 (3)0.0032 (3)0.0033 (2)0.0005 (2)
O10.0225 (10)0.0322 (11)0.0174 (9)0.0018 (8)0.0006 (8)0.0003 (8)
O20.0354 (11)0.0214 (10)0.0202 (10)0.0009 (8)0.0088 (9)0.0046 (8)
O30.0562 (14)0.0183 (10)0.0277 (11)0.0062 (9)0.0184 (10)0.0025 (8)
O40.0290 (11)0.0255 (10)0.0174 (10)0.0016 (8)0.0092 (8)0.0003 (8)
O50.0351 (12)0.0348 (12)0.0377 (13)0.0094 (10)0.0132 (10)0.0146 (10)
O60.0491 (14)0.0396 (13)0.0384 (13)0.0098 (11)0.0286 (11)0.0169 (10)
N10.0217 (11)0.0163 (10)0.0135 (10)0.0004 (9)0.0048 (9)0.0000 (8)
N20.0261 (12)0.0218 (11)0.0118 (10)0.0055 (9)0.0039 (9)0.0021 (9)
N30.0215 (11)0.0185 (11)0.0131 (10)0.0038 (9)0.0056 (8)0.0010 (8)
N40.0164 (10)0.0166 (10)0.0172 (11)0.0003 (8)0.0045 (9)0.0003 (8)
N50.0188 (11)0.0147 (10)0.0156 (10)0.0010 (8)0.0053 (8)0.0004 (8)
N60.0179 (11)0.0189 (11)0.0113 (10)0.0013 (8)0.0027 (8)0.0014 (8)
N70.0171 (10)0.0176 (10)0.0135 (10)0.0001 (8)0.0048 (8)0.0006 (8)
N80.0189 (11)0.0208 (11)0.0157 (11)0.0011 (9)0.0047 (9)0.0003 (9)
C10.0229 (13)0.0169 (12)0.0159 (12)0.0015 (10)0.0045 (10)0.0019 (10)
C20.0285 (14)0.0217 (13)0.0133 (12)0.0017 (11)0.0058 (11)0.0003 (10)
C30.0240 (14)0.0221 (13)0.0196 (13)0.0008 (11)0.0095 (11)0.0039 (11)
C40.0186 (13)0.0207 (13)0.0189 (13)0.0038 (10)0.0040 (10)0.0001 (10)
C50.0172 (12)0.0144 (11)0.0152 (12)0.0011 (9)0.0051 (10)0.0009 (9)
C60.0170 (12)0.0189 (12)0.0150 (12)0.0003 (10)0.0053 (10)0.0021 (10)
C70.0191 (13)0.0184 (13)0.0152 (12)0.0014 (10)0.0041 (10)0.0023 (10)
C80.0169 (12)0.0172 (12)0.0160 (12)0.0003 (10)0.0040 (10)0.0001 (10)
C90.0214 (13)0.0161 (12)0.0194 (13)0.0016 (10)0.0062 (10)0.0012 (10)
C100.0232 (13)0.0172 (12)0.0222 (14)0.0024 (10)0.0054 (11)0.0035 (10)
C110.0200 (13)0.0214 (13)0.0170 (13)0.0007 (10)0.0044 (10)0.0036 (10)
C120.0175 (12)0.0183 (12)0.0169 (12)0.0016 (10)0.0060 (10)0.0012 (10)
C130.0210 (13)0.0178 (12)0.0171 (13)0.0005 (10)0.0048 (10)0.0027 (10)
C140.0228 (13)0.0230 (13)0.0141 (12)0.0031 (11)0.0050 (10)0.0004 (10)
C150.0206 (13)0.0238 (13)0.0166 (13)0.0005 (11)0.0066 (10)0.0035 (10)
C160.0177 (12)0.0200 (13)0.0181 (13)0.0004 (10)0.0040 (10)0.0022 (10)
C170.0145 (12)0.0160 (12)0.0165 (12)0.0016 (9)0.0028 (10)0.0008 (9)
C180.0145 (12)0.0186 (12)0.0149 (12)0.0016 (10)0.0060 (10)0.0014 (10)
C190.0183 (12)0.0155 (12)0.0162 (12)0.0003 (10)0.0042 (10)0.0026 (10)
C200.0152 (12)0.0178 (12)0.0175 (12)0.0014 (10)0.0045 (10)0.0007 (10)
C210.0208 (13)0.0181 (12)0.0180 (13)0.0008 (10)0.0064 (10)0.0008 (10)
C220.0200 (13)0.0206 (13)0.0211 (13)0.0006 (10)0.0048 (11)0.0066 (10)
C230.0244 (14)0.0224 (13)0.0141 (12)0.0023 (11)0.0068 (10)0.0009 (10)
C240.0211 (13)0.0198 (13)0.0212 (13)0.0000 (10)0.0079 (11)0.0029 (10)
C250.0216 (15)0.059 (2)0.0235 (15)0.0058 (14)0.0060 (12)0.0075 (14)
C260.0246 (14)0.0261 (14)0.0285 (15)0.0050 (12)0.0022 (12)0.0032 (12)
Geometric parameters (Å, º) top
Ag1—N12.237 (2)C6—H60.9500
Ag1—N72.269 (2)C7—C81.469 (3)
Ag1—N82.489 (2)C7—H70.9500
Ag2—N32.295 (2)C8—C91.389 (4)
Ag2—N52.248 (2)C9—C101.388 (4)
Ag2—N42.472 (2)C9—H90.9500
S1—O31.449 (2)C10—C111.389 (4)
S1—O21.453 (2)C10—H100.9500
S1—O11.457 (2)C11—C121.394 (4)
S1—C251.758 (3)C11—H110.9500
S2—O61.450 (2)C12—H120.9500
S2—O51.450 (2)C13—C141.380 (4)
S2—O41.456 (2)C13—H130.9500
S2—C261.769 (3)C14—C151.387 (4)
N1—C11.346 (3)C14—H140.9500
N1—C51.349 (3)C15—C161.387 (4)
N2—C61.271 (3)C15—H150.9500
N2—N31.413 (3)C16—C171.391 (4)
N3—C71.278 (3)C16—H160.9500
N4—C121.332 (3)C17—C181.474 (3)
N4—C81.352 (3)C18—H180.9500
N5—C171.352 (3)C19—C201.477 (3)
N5—C131.352 (3)C19—H190.9500
N6—C181.281 (3)C20—C211.389 (4)
N6—N71.414 (3)C21—C221.397 (4)
N7—C191.280 (3)C21—H210.9500
N8—C241.343 (3)C22—C231.380 (4)
N8—C201.351 (3)C22—H220.9500
C1—C21.388 (4)C23—C241.383 (4)
C1—H10.9500C23—H230.9500
C2—C31.390 (4)C24—H240.9500
C2—H20.9500C25—H25A0.9800
C3—C41.388 (4)C25—H25B0.9800
C3—H30.9500C25—H25C0.9800
C4—C51.389 (4)C26—H26A0.9800
C4—H40.9500C26—H26B0.9800
C5—C61.470 (3)C26—H26C0.9800
N1—Ag1—N7175.91 (8)C9—C8—C7118.5 (2)
N1—Ag1—N8110.56 (8)C8—C9—C10118.5 (2)
N7—Ag1—N871.09 (8)C8—C9—H9120.8
N3—Ag2—N471.00 (8)C10—C9—H9120.8
N3—Ag2—N5172.76 (8)C11—C10—C9119.0 (2)
N4—Ag2—N5115.64 (8)C11—C10—H10120.5
O3—S1—O2112.01 (12)C9—C10—H10120.5
O3—S1—O1113.25 (12)C10—C11—C12118.4 (2)
O2—S1—O1113.30 (12)C10—C11—H11120.8
O3—S1—C25106.44 (16)C12—C11—H11120.8
O2—S1—C25105.93 (15)N4—C12—C11123.6 (2)
O1—S1—C25105.14 (13)N4—C12—H12118.2
O6—S2—O5113.86 (15)C11—C12—H12118.2
O6—S2—O4112.20 (13)N5—C13—C14123.9 (2)
O5—S2—O4112.57 (14)N5—C13—H13118.0
O6—S2—C26106.03 (15)C14—C13—H13118.0
O5—S2—C26105.25 (14)C13—C14—C15118.7 (2)
O4—S2—C26106.13 (13)C13—C14—H14120.6
C1—N1—C5117.7 (2)C15—C14—H14120.6
C1—N1—Ag1117.97 (17)C16—C15—C14118.4 (2)
C5—N1—Ag1124.12 (17)C16—C15—H15120.8
C6—N2—N3112.4 (2)C14—C15—H15120.8
C7—N3—N2111.2 (2)C15—C16—C17119.5 (2)
C7—N3—Ag2117.47 (17)C15—C16—H16120.3
N2—N3—Ag2130.38 (16)C17—C16—H16120.3
C12—N4—C8117.3 (2)N5—C17—C16122.6 (2)
C12—N4—Ag2131.85 (17)N5—C17—C18115.6 (2)
C8—N4—Ag2110.66 (16)C16—C17—C18121.8 (2)
C17—N5—C13116.8 (2)N6—C18—C17120.4 (2)
C17—N5—Ag2127.32 (17)N6—C18—H18119.8
C13—N5—Ag2115.86 (17)C17—C18—H18119.8
C18—N6—N7112.1 (2)N7—C19—C20121.2 (2)
C19—N7—N6112.4 (2)N7—C19—H19119.4
C19—N7—Ag1118.86 (17)C20—C19—H19119.4
N6—N7—Ag1128.72 (15)N8—C20—C21123.3 (2)
C24—N8—C20117.2 (2)N8—C20—C19117.7 (2)
C24—N8—Ag1131.92 (18)C21—C20—C19118.9 (2)
C20—N8—Ag1110.83 (16)C20—C21—C22118.0 (2)
N1—C1—C2123.3 (2)C20—C21—H21121.0
N1—C1—H1118.3C22—C21—H21121.0
C2—C1—H1118.3C23—C22—C21119.2 (2)
C1—C2—C3118.8 (2)C23—C22—H22120.4
C1—C2—H2120.6C21—C22—H22120.4
C3—C2—H2120.6C22—C23—C24118.8 (2)
C4—C3—C2118.1 (2)C22—C23—H23120.6
C4—C3—H3121.0C24—C23—H23120.6
C2—C3—H3121.0N8—C24—C23123.4 (2)
C3—C4—C5119.9 (2)N8—C24—H24118.3
C3—C4—H4120.0C23—C24—H24118.3
C5—C4—H4120.0S1—C25—H25A109.5
N1—C5—C4122.1 (2)S1—C25—H25B109.5
N1—C5—C6115.9 (2)H25A—C25—H25B109.5
C4—C5—C6122.0 (2)S1—C25—H25C109.5
N2—C6—C5118.9 (2)H25A—C25—H25C109.5
N2—C6—H6120.5H25B—C25—H25C109.5
C5—C6—H6120.5S2—C26—H26A109.5
N3—C7—C8121.2 (2)S2—C26—H26B109.5
N3—C7—H7119.4H26A—C26—H26B109.5
C8—C7—H7119.4S2—C26—H26C109.5
N4—C8—C9123.3 (2)H26A—C26—H26C109.5
N4—C8—C7118.2 (2)H26B—C26—H26C109.5
N8—Ag1—N1—C12.9 (2)Ag2—N4—C8—C77.1 (3)
N8—Ag1—N1—C5171.47 (19)N3—C7—C8—N42.1 (4)
C6—N2—N3—C7170.1 (2)N3—C7—C8—C9176.7 (2)
C6—N2—N3—Ag21.8 (3)N4—C8—C9—C100.2 (4)
N4—Ag2—N3—C710.50 (18)C7—C8—C9—C10178.5 (2)
N4—Ag2—N3—N2178.2 (2)C8—C9—C10—C110.6 (4)
N5—Ag2—N4—C126.5 (2)C9—C10—C11—C120.5 (4)
N3—Ag2—N4—C12176.6 (2)C8—N4—C12—C111.4 (4)
N5—Ag2—N4—C8168.07 (16)Ag2—N4—C12—C11172.87 (18)
N3—Ag2—N4—C88.83 (16)C10—C11—C12—N40.6 (4)
N4—Ag2—N5—C17179.03 (19)C17—N5—C13—C142.5 (4)
N4—Ag2—N5—C132.8 (2)Ag2—N5—C13—C14179.2 (2)
C18—N6—N7—C19175.7 (2)N5—C13—C14—C151.3 (4)
C18—N6—N7—Ag16.4 (3)C13—C14—C15—C160.8 (4)
N8—Ag1—N7—C194.51 (18)C14—C15—C16—C171.7 (4)
N8—Ag1—N7—N6177.7 (2)C13—N5—C17—C161.5 (4)
N1—Ag1—N8—C249.6 (3)Ag2—N5—C17—C16179.64 (18)
N7—Ag1—N8—C24174.4 (2)C13—N5—C17—C18179.5 (2)
N1—Ag1—N8—C20173.08 (16)Ag2—N5—C17—C181.3 (3)
N7—Ag1—N8—C202.94 (16)C15—C16—C17—N50.6 (4)
C5—N1—C1—C21.4 (4)C15—C16—C17—C18178.4 (2)
Ag1—N1—C1—C2173.3 (2)N7—N6—C18—C17176.2 (2)
N1—C1—C2—C30.4 (4)N5—C17—C18—N6170.4 (2)
C1—C2—C3—C41.2 (4)C16—C17—C18—N610.6 (4)
C2—C3—C4—C51.8 (4)N6—N7—C19—C20176.2 (2)
C1—N1—C5—C40.8 (4)Ag1—N7—C19—C205.6 (3)
Ag1—N1—C5—C4173.60 (19)C24—N8—C20—C210.9 (4)
C1—N1—C5—C6177.9 (2)Ag1—N8—C20—C21178.6 (2)
Ag1—N1—C5—C67.7 (3)C24—N8—C20—C19176.3 (2)
C3—C4—C5—N10.8 (4)Ag1—N8—C20—C191.5 (3)
C3—C4—C5—C6179.4 (2)N7—C19—C20—N82.5 (4)
N3—N2—C6—C5177.8 (2)N7—C19—C20—C21174.7 (2)
N1—C5—C6—N2170.2 (2)N8—C20—C21—C220.9 (4)
C4—C5—C6—N28.5 (4)C19—C20—C21—C22176.2 (2)
N2—N3—C7—C8178.9 (2)C20—C21—C22—C230.1 (4)
Ag2—N3—C7—C811.2 (3)C21—C22—C23—C240.8 (4)
C12—N4—C8—C91.2 (4)C20—N8—C24—C230.0 (4)
Ag2—N4—C8—C9174.3 (2)Ag1—N8—C24—C23177.15 (19)
C12—N4—C8—C7177.5 (2)C22—C23—C24—N80.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O3i0.952.283.131 (4)149
C21—H21···O5ii0.952.363.164 (4)143
C24—H24···O4iii0.952.353.258 (4)161
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Ag2(C12H10N4)2](CH3SO3)2
Mr826.40
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)9.017 (5), 19.115 (5), 17.397 (7)
β (°) 105.605 (16)
V3)2888 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.56
Crystal size (mm)0.18 × 0.10 × 0.08
Data collection
DiffractometerRigaku AFC12κ/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.804, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
30221, 5668, 5514
Rint0.030
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.067, 1.10
No. of reflections5668
No. of parameters397
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.93, 0.67

Computer programs: CrystalClear (Rigaku/MSC, 2005), CrystalClear, SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006), SHELXL97.

Selected geometric parameters (Å, º) top
Ag1—N12.237 (2)Ag2—N32.295 (2)
Ag1—N72.269 (2)Ag2—N52.248 (2)
Ag1—N82.489 (2)Ag2—N42.472 (2)
N1—Ag1—N7175.91 (8)N3—Ag2—N471.00 (8)
N1—Ag1—N8110.56 (8)N3—Ag2—N5172.76 (8)
N7—Ag1—N871.09 (8)N4—Ag2—N5115.64 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O3i0.952.283.131 (4)149
C21—H21···O5ii0.952.363.164 (4)143
C24—H24···O4iii0.952.353.258 (4)161
Symmetry codes: (i) x, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1, z+2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds