Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C23H37N2P, both N atoms have pyramidal geometries, with angle sums of 355.8 and 357.8°. The crystal packing is stabilized by C—H...π (H...π = 2.797 Å) inter­actions, leading to centrosymmetric dimers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807032084/hb2466sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807032084/hb2466Isup2.hkl
Contains datablock I

CCDC reference: 657728

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • R factor = 0.060
  • wR factor = 0.221
  • Data-to-parameter ratio = 16.3

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

Phosphines are known to stabilize transition metal centers by σ donation and π-back donation and their complexes have applications in diverse fields (Ohta et al., 1988; Katti et al., 1999). The chemistry of aminophosphines which carry one or more amino substituents on phosphorus is an active area of research as the phosphorus environment can be modified both electronically and sterically by the proper choice of amino substituents. Herein, we report the synthesis and structure of the title compound, (I), (Fig. 1), synthesized by the stepwise aminolysis of dichloro phenyl phosphine.

The structure reveals the pyramidal nature of the phosphorus atom and interestingly near planar geometry at the two nitrogen sites (Σ N1 = 355.8° and Σ N2 = 357.8°). The P—N bonds due to amino substituents are significantly shorter [P1—N1 = 1.701 (4)Å and P1—N2 = 1.702 (4) Å] than the reference P—N single bond distance (1.76–1.78 Å). The six membered piperidino moeity shows a chair conformation as do the two cyclohexane rings.

The asymmetric molecule and its inversion equivalent at (2 - x, 1 - y, -z) form a C—H···π linked dimer with an H···π separation of 2.797 (7) Å. The packing of these dimers in the lattice is through van der Waals interactions (Fig. 2).

Related literature top

For related literature, see: Farrugia (1999); Katti et al. (1999); Ohta et al. (1988); Ried & Schmidt (1957); Spek (2003).

Experimental top

To a stirred solution of phenyldichlorophosphine (2.00 g, 11.17 mmol) in toluene-hexane mixture (1:1, 30 ml) at 278 K was added a solution of dicyclohexylamine (4.04 g, 22.32 mmol) in toluene (10 ml) over a period of 30 minutes. After complete addition, the reaction mixture was brought to room temperature, stirred for 12 h and filtered to remove the precipitated amine hydrochloride. The hydrochloride was washed with hexane (5 × 3 ml) and the washings were collected along with filtrate. The filtrate was reacted further with piperidine (1.90 g, 22.35 mmol) in toluene (5 ml) in a similar way for 10 h. The resultant mixture was worked up in the same way as above to remove piperidine hydrochloride formed. The solvent was pumped off completely and the residue was extracted with hexane (4 × 5 ml). On removal of hexane, the title compound was obtained as a colourless powdery solid with a yield of 2.90 g (70%). X-ray quality colourless blocks of (I) were grown from hexane solution at 278 K.

Melting Point: 401 K. 1H NMR (400 MHz, CDCl3): 1.10–1.24 (m, 12H), 1.54–1.68(m,14H), 2.60–2.76(m,2H), 2.90–3.00(m,4H), 7.25–7.29 (m,3H) 7.52–7.60(m,2H). 13 C NMR (101 MHz, CDCl3): 23.6, 25.8, 27.0, 28.1, 33.7, 45.2, 56.1, 126.8, 128.0, 131.7, 145.1. 31P NMR(161 MHz): 79.2

Refinement top

All the hydrogen atoms were located in difference maps, relocated in idealized positions (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

Phosphines are known to stabilize transition metal centers by σ donation and π-back donation and their complexes have applications in diverse fields (Ohta et al., 1988; Katti et al., 1999). The chemistry of aminophosphines which carry one or more amino substituents on phosphorus is an active area of research as the phosphorus environment can be modified both electronically and sterically by the proper choice of amino substituents. Herein, we report the synthesis and structure of the title compound, (I), (Fig. 1), synthesized by the stepwise aminolysis of dichloro phenyl phosphine.

The structure reveals the pyramidal nature of the phosphorus atom and interestingly near planar geometry at the two nitrogen sites (Σ N1 = 355.8° and Σ N2 = 357.8°). The P—N bonds due to amino substituents are significantly shorter [P1—N1 = 1.701 (4)Å and P1—N2 = 1.702 (4) Å] than the reference P—N single bond distance (1.76–1.78 Å). The six membered piperidino moeity shows a chair conformation as do the two cyclohexane rings.

The asymmetric molecule and its inversion equivalent at (2 - x, 1 - y, -z) form a C—H···π linked dimer with an H···π separation of 2.797 (7) Å. The packing of these dimers in the lattice is through van der Waals interactions (Fig. 2).

For related literature, see: Farrugia (1999); Katti et al. (1999); Ohta et al. (1988); Ried & Schmidt (1957); Spek (2003).

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids. Hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. The packing in (I) showing C—H···π interactions as dashed lines.
(Dicyclohexylamino)(phenyl)(piperdin-1-yl)phosphine top
Crystal data top
C23H37N2PZ = 2
Mr = 372.52F(000) = 408
Triclinic, P1Dx = 1.131 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5383 (13) ÅCell parameters from 25 reflections
b = 10.259 (3) Åθ = 10–12°
c = 11.413 (10) ŵ = 0.14 mm1
α = 86.58 (5)°T = 293 K
β = 82.04 (2)°Block, colourless
γ = 81.67 (5)°0.30 × 0.20 × 0.20 mm
V = 1093.4 (10) Å3
Data collection top
Enraf-Nonius CAD-4
diffractometer
2674 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω–2θ scansh = 011
Absorption correction: ψ scan
(North et al., 1968)
k = 1212
Tmin = 0.959, Tmax = 0.990l = 1313
4095 measured reflections3 standard reflections every 60 min
3844 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.221 w = 1/[σ2(Fo2) + (0.077P)2 + 1.2691P]
where P = (Fo2 + 2Fc2)/3
S = 1.26(Δ/σ)max < 0.001
3844 reflectionsΔρmax = 0.45 e Å3
236 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (4)
Crystal data top
C23H37N2Pγ = 81.67 (5)°
Mr = 372.52V = 1093.4 (10) Å3
Triclinic, P1Z = 2
a = 9.5383 (13) ÅMo Kα radiation
b = 10.259 (3) ŵ = 0.14 mm1
c = 11.413 (10) ÅT = 293 K
α = 86.58 (5)°0.30 × 0.20 × 0.20 mm
β = 82.04 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2674 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.030
Tmin = 0.959, Tmax = 0.9903 standard reflections every 60 min
4095 measured reflections intensity decay: none
3844 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.221H-atom parameters constrained
S = 1.26Δρmax = 0.45 e Å3
3844 reflectionsΔρmin = 0.28 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7411 (5)0.4058 (4)0.0138 (4)0.0468 (11)
H10.72910.49710.01780.056*
C20.6625 (5)0.3492 (5)0.0564 (4)0.0562 (12)
H20.59920.40250.09980.067*
C30.6768 (6)0.2135 (5)0.0630 (4)0.0620 (14)
H30.62330.17570.11060.074*
C40.7704 (6)0.1355 (5)0.0010 (4)0.0610 (14)
H40.77980.04420.00200.073*
C50.8515 (5)0.1935 (4)0.0707 (4)0.0500 (11)
H50.91600.13960.11270.060*
C60.8386 (4)0.3291 (4)0.0792 (3)0.0386 (9)
C70.9409 (5)0.6506 (4)0.2249 (4)0.0524 (12)
H7A1.03570.63850.18010.063*
H7B0.95160.64690.30830.063*
C80.8642 (6)0.7832 (5)0.1921 (6)0.0692 (15)
H8A0.86280.79090.10710.083*
H8B0.91450.85180.21400.083*
C90.7113 (6)0.8013 (5)0.2553 (6)0.0747 (16)
H9A0.71250.80430.33990.090*
H9B0.66060.88420.22840.090*
C100.6344 (5)0.6883 (5)0.2300 (5)0.0613 (13)
H10A0.62280.69200.14670.074*
H10B0.54000.69710.27560.074*
C110.7183 (5)0.5556 (4)0.2620 (4)0.0505 (11)
H11A0.72100.54800.34680.061*
H11B0.67070.48480.24060.061*
C121.1441 (4)0.2548 (4)0.2894 (4)0.0402 (10)
H121.14180.19470.35940.048*
C131.2366 (5)0.1796 (5)0.1887 (4)0.0547 (12)
H13A1.19580.10100.17650.066*
H13B1.23640.23430.11640.066*
C141.3897 (5)0.1401 (5)0.2135 (5)0.0671 (15)
H14A1.44600.09830.14500.081*
H14B1.39140.07650.27990.081*
C151.4562 (5)0.2588 (5)0.2417 (5)0.0683 (15)
H15A1.55190.22990.26120.082*
H15B1.46330.31860.17270.082*
C161.3667 (5)0.3296 (6)0.3443 (5)0.0681 (15)
H16A1.40870.40660.35940.082*
H16B1.36610.27170.41470.082*
C171.2137 (5)0.3722 (5)0.3188 (4)0.0550 (12)
H17A1.21370.43620.25270.066*
H17B1.15790.41430.38740.066*
C180.8764 (5)0.3260 (4)0.4734 (4)0.0462 (11)
H18A0.96350.29500.50750.055*
H18B0.87230.42020.45720.055*
C190.7475 (6)0.2988 (4)0.5619 (4)0.0565 (13)
H19A0.75030.34050.63540.068*
H19B0.66040.33690.53080.068*
C200.7457 (6)0.1518 (5)0.5864 (4)0.0612 (13)
H20A0.65870.13760.63750.073*
H20B0.82620.11560.62730.073*
C210.7538 (6)0.0807 (5)0.4716 (4)0.0587 (13)
H21A0.76180.01350.48920.070*
H21B0.66610.10750.43720.070*
C220.8789 (5)0.1097 (4)0.3831 (4)0.0490 (11)
H22A0.87560.06760.30990.059*
H22B0.96690.07240.41330.059*
C230.8798 (4)0.2572 (4)0.3575 (3)0.0373 (9)
H230.78940.29050.32730.045*
N10.8629 (4)0.5432 (3)0.2006 (3)0.0423 (9)
N20.9943 (3)0.2908 (3)0.2651 (3)0.0377 (8)
P10.96640 (12)0.40271 (11)0.15159 (9)0.0375 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.054 (3)0.047 (3)0.042 (2)0.014 (2)0.012 (2)0.0025 (19)
C20.061 (3)0.068 (3)0.045 (3)0.014 (2)0.020 (2)0.003 (2)
C30.070 (3)0.075 (4)0.049 (3)0.020 (3)0.021 (3)0.009 (3)
C40.082 (4)0.051 (3)0.056 (3)0.012 (3)0.019 (3)0.014 (2)
C50.066 (3)0.043 (3)0.043 (3)0.005 (2)0.014 (2)0.006 (2)
C60.046 (2)0.041 (2)0.029 (2)0.0068 (18)0.0059 (18)0.0007 (17)
C70.055 (3)0.047 (3)0.058 (3)0.005 (2)0.015 (2)0.010 (2)
C80.079 (4)0.040 (3)0.090 (4)0.007 (3)0.016 (3)0.008 (3)
C90.083 (4)0.050 (3)0.085 (4)0.012 (3)0.007 (3)0.012 (3)
C100.048 (3)0.060 (3)0.069 (3)0.011 (2)0.002 (2)0.007 (3)
C110.049 (3)0.051 (3)0.049 (3)0.001 (2)0.003 (2)0.004 (2)
C120.040 (2)0.040 (2)0.040 (2)0.0045 (18)0.0079 (18)0.0011 (18)
C130.049 (3)0.051 (3)0.062 (3)0.000 (2)0.002 (2)0.016 (2)
C140.049 (3)0.060 (3)0.086 (4)0.002 (2)0.003 (3)0.003 (3)
C150.044 (3)0.073 (4)0.087 (4)0.011 (3)0.009 (3)0.014 (3)
C160.054 (3)0.081 (4)0.075 (4)0.017 (3)0.022 (3)0.003 (3)
C170.054 (3)0.054 (3)0.060 (3)0.002 (2)0.020 (2)0.015 (2)
C180.059 (3)0.042 (2)0.038 (2)0.007 (2)0.006 (2)0.0044 (19)
C190.073 (3)0.046 (3)0.045 (3)0.004 (2)0.006 (2)0.006 (2)
C200.075 (4)0.056 (3)0.046 (3)0.009 (3)0.009 (2)0.006 (2)
C210.070 (3)0.047 (3)0.061 (3)0.016 (2)0.007 (3)0.008 (2)
C220.065 (3)0.040 (2)0.041 (2)0.006 (2)0.004 (2)0.0018 (19)
C230.040 (2)0.038 (2)0.033 (2)0.0045 (17)0.0049 (17)0.0013 (16)
N10.045 (2)0.0368 (19)0.046 (2)0.0045 (15)0.0088 (16)0.0062 (15)
N20.0373 (19)0.0408 (19)0.0348 (18)0.0038 (15)0.0060 (14)0.0002 (14)
P10.0418 (6)0.0381 (6)0.0326 (6)0.0044 (4)0.0059 (4)0.0023 (4)
Geometric parameters (Å, º) top
C1—C21.374 (6)C13—H13A0.9700
C1—C61.397 (6)C13—H13B0.9700
C1—H10.9300C14—C151.521 (7)
C2—C31.384 (7)C14—H14A0.9700
C2—H20.9300C14—H14B0.9700
C3—C41.369 (7)C15—C161.507 (8)
C3—H30.9300C15—H15A0.9700
C4—C51.395 (6)C15—H15B0.9700
C4—H40.9300C16—C171.524 (7)
C5—C61.387 (6)C16—H16A0.9700
C5—H50.9300C16—H16B0.9700
C6—P11.832 (4)C17—H17A0.9700
C7—N11.474 (6)C17—H17B0.9700
C7—C81.501 (7)C18—C191.527 (6)
C7—H7A0.9700C18—C231.529 (6)
C7—H7B0.9700C18—H18A0.9700
C8—C91.526 (8)C18—H18B0.9700
C8—H8A0.9700C19—C201.519 (6)
C8—H8B0.9700C19—H19A0.9700
C9—C101.520 (8)C19—H19B0.9700
C9—H9A0.9700C20—C211.524 (7)
C9—H9B0.9700C20—H20A0.9700
C10—C111.527 (6)C20—H20B0.9700
C10—H10A0.9700C21—C221.505 (6)
C10—H10B0.9700C21—H21A0.9700
C11—N11.450 (6)C21—H21B0.9700
C11—H11A0.9700C22—C231.525 (6)
C11—H11B0.9700C22—H22A0.9700
C12—N21.483 (5)C22—H22B0.9700
C12—C131.523 (6)C23—N21.473 (5)
C12—C171.532 (6)C23—H230.9800
C12—H120.9800N1—P11.701 (4)
C13—C141.519 (7)N2—P11.702 (4)
C2—C1—C6121.4 (4)H14A—C14—H14B108.0
C2—C1—H1119.3C16—C15—C14110.4 (4)
C6—C1—H1119.3C16—C15—H15A109.6
C1—C2—C3120.6 (5)C14—C15—H15A109.6
C1—C2—H2119.7C16—C15—H15B109.6
C3—C2—H2119.7C14—C15—H15B109.6
C4—C3—C2119.5 (5)H15A—C15—H15B108.1
C4—C3—H3120.3C15—C16—C17111.2 (4)
C2—C3—H3120.3C15—C16—H16A109.4
C3—C4—C5119.7 (5)C17—C16—H16A109.4
C3—C4—H4120.1C15—C16—H16B109.4
C5—C4—H4120.1C17—C16—H16B109.4
C6—C5—C4121.9 (4)H16A—C16—H16B108.0
C6—C5—H5119.1C16—C17—C12111.6 (4)
C4—C5—H5119.1C16—C17—H17A109.3
C5—C6—C1116.9 (4)C12—C17—H17A109.3
C5—C6—P1120.5 (3)C16—C17—H17B109.3
C1—C6—P1121.7 (3)C12—C17—H17B109.3
N1—C7—C8111.5 (4)H17A—C17—H17B108.0
N1—C7—H7A109.3C19—C18—C23111.2 (4)
C8—C7—H7A109.3C19—C18—H18A109.4
N1—C7—H7B109.3C23—C18—H18A109.4
C8—C7—H7B109.3C19—C18—H18B109.4
H7A—C7—H7B108.0C23—C18—H18B109.4
C7—C8—C9110.5 (5)H18A—C18—H18B108.0
C7—C8—H8A109.6C20—C19—C18111.4 (4)
C9—C8—H8A109.6C20—C19—H19A109.3
C7—C8—H8B109.6C18—C19—H19A109.3
C9—C8—H8B109.6C20—C19—H19B109.3
H8A—C8—H8B108.1C18—C19—H19B109.3
C10—C9—C8110.3 (4)H19A—C19—H19B108.0
C10—C9—H9A109.6C19—C20—C21111.0 (4)
C8—C9—H9A109.6C19—C20—H20A109.4
C10—C9—H9B109.6C21—C20—H20A109.4
C8—C9—H9B109.6C19—C20—H20B109.4
H9A—C9—H9B108.1C21—C20—H20B109.4
C9—C10—C11110.8 (4)H20A—C20—H20B108.0
C9—C10—H10A109.5C22—C21—C20112.3 (4)
C11—C10—H10A109.5C22—C21—H21A109.2
C9—C10—H10B109.5C20—C21—H21A109.2
C11—C10—H10B109.5C22—C21—H21B109.2
H10A—C10—H10B108.1C20—C21—H21B109.2
N1—C11—C10110.7 (4)H21A—C21—H21B107.9
N1—C11—H11A109.5C21—C22—C23112.3 (4)
C10—C11—H11A109.5C21—C22—H22A109.1
N1—C11—H11B109.5C23—C22—H22A109.1
C10—C11—H11B109.5C21—C22—H22B109.1
H11A—C11—H11B108.1C23—C22—H22B109.1
N2—C12—C13111.9 (3)H22A—C22—H22B107.9
N2—C12—C17113.7 (3)N2—C23—C22114.5 (3)
C13—C12—C17110.3 (4)N2—C23—C18113.2 (3)
N2—C12—H12106.8C22—C23—C18109.6 (3)
C13—C12—H12106.8N2—C23—H23106.3
C17—C12—H12106.8C22—C23—H23106.3
C14—C13—C12112.3 (4)C18—C23—H23106.3
C14—C13—H13A109.1C11—N1—C7112.9 (4)
C12—C13—H13A109.1C11—N1—P1127.2 (3)
C14—C13—H13B109.1C7—N1—P1115.7 (3)
C12—C13—H13B109.1C23—N2—C12117.7 (3)
H13A—C13—H13B107.9C23—N2—P1123.5 (3)
C13—C14—C15111.5 (4)C12—N2—P1116.6 (3)
C13—C14—H14A109.3N1—P1—N2111.38 (18)
C15—C14—H14A109.3N1—P1—C6100.57 (19)
C13—C14—H14B109.3N2—P1—C6101.20 (18)
C15—C14—H14B109.3
C6—C1—C2—C30.8 (7)C19—C18—C23—N2174.5 (3)
C1—C2—C3—C40.1 (8)C19—C18—C23—C2256.3 (5)
C2—C3—C4—C50.9 (8)C10—C11—N1—C756.9 (5)
C3—C4—C5—C61.2 (8)C10—C11—N1—P1147.5 (3)
C4—C5—C6—C10.5 (7)C8—C7—N1—C1157.5 (5)
C4—C5—C6—P1170.0 (4)C8—C7—N1—P1143.8 (4)
C2—C1—C6—C50.5 (7)C22—C23—N2—C1264.7 (5)
C2—C1—C6—P1168.9 (4)C18—C23—N2—C1262.0 (4)
N1—C7—C8—C955.4 (6)C22—C23—N2—P1132.7 (3)
C7—C8—C9—C1054.6 (6)C18—C23—N2—P1100.6 (4)
C8—C9—C10—C1154.6 (6)C13—C12—N2—C23129.2 (4)
C9—C10—C11—N155.6 (5)C17—C12—N2—C23105.0 (4)
N2—C12—C13—C14179.0 (4)C13—C12—N2—P167.0 (4)
C17—C12—C13—C1453.3 (5)C17—C12—N2—P158.9 (4)
C12—C13—C14—C1555.0 (6)C11—N1—P1—N260.1 (4)
C13—C14—C15—C1656.2 (6)C7—N1—P1—N295.0 (3)
C14—C15—C16—C1757.2 (6)C11—N1—P1—C646.5 (4)
C15—C16—C17—C1256.8 (6)C7—N1—P1—C6158.4 (3)
N2—C12—C17—C16179.4 (4)C23—N2—P1—N146.2 (3)
C13—C12—C17—C1654.0 (5)C12—N2—P1—N1116.6 (3)
C23—C18—C19—C2056.7 (5)C23—N2—P1—C659.9 (3)
C18—C19—C20—C2154.3 (6)C12—N2—P1—C6137.2 (3)
C19—C20—C21—C2253.4 (6)C5—C6—P1—N1152.2 (3)
C20—C21—C22—C2354.8 (6)C1—C6—P1—N138.8 (4)
C21—C22—C23—N2175.9 (4)C5—C6—P1—N237.7 (4)
C21—C22—C23—C1855.6 (5)C1—C6—P1—N2153.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HD···AD—H···A
C7—H7A···Cgi0.972.797 (7)159
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC23H37N2P
Mr372.52
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.5383 (13), 10.259 (3), 11.413 (10)
α, β, γ (°)86.58 (5), 82.04 (2), 81.67 (5)
V3)1093.4 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerEnraf-Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.959, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
4095, 3844, 2674
Rint0.030
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.221, 1.26
No. of reflections3844
No. of parameters236
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.28

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, XCAD4 (Harms & Wocadlo, 1995), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-32 (Farrugia, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HD···AD—H···A
C7—H7A···Cgi0.972.797 (7)159
Symmetry code: (i) x+2, y+1, z.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds